Chapter 4 Selected Topics for Circuits and Systems

4-1 Poisson’s and Laplace’s Equations

Poisson’s equation: V-&E = p= v/ =~

g

Laplace’s equation: If no charge exists, p=0, V% =0

Eg. The two plates of a parallel-plate capacitor are separated by a distance d and
maintained at potentials 0 and Vo. Assume negligible fringing effect at the edges,
determine (a) the potential at any point between the plates, (b) the surface charge
densities on the plates. [[E A EHT]

(Sol.) av _ = —0)= —d)= VY | e _
g ~0=Y =y e Viy=0)=0 Vly=d)=Y =V ="py e e oo
= . dV Y% L = P
E:— —_— = —O,E =a -E:_
ydy y P -
A - &V,
At the lower plate: a, =Y, 0Oy = — q
&V,
At the upper plate: 4, =-Y, p, :TO

Eg. The upper and lower conducting plates of a large parallel-plate capacitor are
separated by a distance d and maintained at potentials Vo and 0, respectively. A
dielectric slab of dielectric constant & and uniform thickness d1=0.8d is placed
over the lower plate. Assuming negligible fringing effect, determine (a) the
potential and electric field distribution in the .
dielectric slab, (b) the potential and electric field lq— = .
distribution in the air space between the dielectric . __T

slab and the upper plate. [& A EH]

(Sol.) Set Vy(y)=cry+C,,Eq = =01, Dy = —V&0s,Cy
Vﬂ (y)=C3y+c4, Ea :—9C3, Da :_98003

V,(0)=0,v,(d)=V,, V,4(0.8d)=V,(0.8d), D,(0.8d)=D,(0.8d)

:)QZL,C2=O,03:8V—V0C]’C4=M
(0.8+0.2¢, )d (0.8+0.2s,) 1+0.25¢,
5yV, = YA 5¢,y—4(g, —1)d _ _ 5¢V,
V=220 E =—y__"0_ (h)v, == r CE =—g %Y
@V = ge B T e OV e B Y G



Eg. Show that uniqueness of electrostatic solutions.

(Proof) Let V1 and V- satisfy V?V, = ~ £ and ViV, = — P Define Vg=V1-Va,
& &

V3Vg=0
1. On the conducting boundaries, Vq =0=V1=V>
2. Letf=Vq, A=V/Vq

V-V, WV, )=V-(fA)= V- A+ A-VE =V, VA, +[WV, | = JVaVVy)- 8,0 = [[[[VV,[ dv

R > oV, =V, -V, oc%,VVd oc%,dsoc R? = ﬁ(VdVVd)'éndS -0, . III|VVd|2dV=0 =
S Vv

Vg=0=Vi=V>
Image Theorem P(x,y,z) in the y>0 il
A0, d, 0)
. - Q 1 1 Grounded [
V X, ,Z = _— plane conductor @ I o R T
region is V(xy,2) a7 \R, R) L s TN T

2 / X \
(a) Physical arrangement. y = Oplane®_ ‘\
S ahe

where R+ and R- are the distances
from Q and —-Q to the point P,
respectively.

)
1Imag¢(‘chargc)
(b) Image charge and field lines.

Eg. A line charge density pi located at a distance d from the axis of a parallel
conducting circular cylinder of radius a. Both are infinitely long. Find the image
position of line charge.

2

(Sol.) Assume p, =—p;,V =~ Edr=- ‘

r r
P J-ldr=—p' /n-=<
7,y ¥ 27,

:>VM:Agnr_0_Agnﬁ= Pk

27 r 2m= r 2@ r
0 0 i 0

i=$=E=C:> d _a
r a d "o
///"\\ -
/ 7 /e )
P P\ P
o | ol (8
d | \\ "l“iil“ /
7
\\ = d "

N i

(a) Line charge and parallel conducting cylinder. (b) Line charge and its image.



Eg. A point charge Q is placed at a distance d to a conducting sphere. Find its

image.
a ri\ L
Q / . Q
] [ (@) }
d N \ »‘ i ‘
' \ 5 / d .
v=0 I 7 !

(a) Point charge and grounded conducting sphere. (b) Point charge and its image.

_1(Q.Q) ,k__Q_a __ a4 a-g
(Sol.) VMW(?TJO:»r_ 5547049 i,

0

d




4-2 Boundary-Value Problems in Rectangular Coordinates

NV oV oWV

vV ox2 + oy° + 72 =0 Let V(x,y,2)=X(X)Y(Y)Z(2), ke+ky2+k,2=0
d?X(x d?Y(y d2z(z)
—~ dxz( VoKX ()=, dyE ) k2v(y)=0 dZS +K22(2)=0

For X(x), 1. kx®=0, X(x)=Aox+By is linear.

2. ke®>0, X(x)=Assinkxx+B1coskxx, X(x=a) is finite, X(x=b) is finite
3. kx?<0, X(X)=Azsinhkxx+B2coshkxx, X(c) is finite, X(-0) is finite
Similar cases exist in Y(y) and Z(z).

Eg. Two grounded, semi-infinite, parallel-plane electrodes are separated by a
distance b. A third electrode perpendicular to and insulated from both is
maintained at a constant potential Vo. Determine the potential distribution in the
region enclosed by the electrodes. [5%]

- V(0,y)=V,,V(x0)=0
BL: (i y)= 0V (xb)=0
2
d d)é (X) — kfx (X) = X (X) — Dlekxx + Dze—kxX — Dze—kxX
X
d2y .
dygy) =—k;Y(y)=Y(y)= Asink,y

=V (x,y)=C.e ™ sink y=k =k 7123
n n y X y b
=V,(x,y)=C,e ® sin nTny
V0=V, =3 Cnsin%
n=1

°Vosin ™y =S¢ [*sin M in MY
IOVOSIany_nZ:;C”joSIn o sin— > dy

{vao,m:odd {C”,mzn
=3y mx =45 2

0, m:even

A
—2 n:odd
jcn:{nﬂ'

0,n:even

nzx

V(xy)=2e 3 Le 7 sin %,n 135, for x>0, 0<y<b.

T noddN



4-3 Boundary-Value Problems in Cylindrical Coordinates
1 a( avj 1 0%V azv_o

VV == |r— |+ S5 —5+—
ror\' or) r°o¢g° oz

2

1. Assume (ZV =0, then V(r,p)=R(N®(p),
z

=
2 2

= e Rgr)+  4R(r) -n’R(r)=0, a o) q)£¢) +n*®(¢)=0
dr dr

—R(nN= Arr"+Bir™", ®(p)=A,Sinngp+ By,CoSngp

—>Vn(r,p)=r"(Asinng+Bcosng)+ r"(A’sinng+B ‘cosng), n#0

»V(r,go):z”gn (r,¢)

2
2. Assume n=0, d d§(¢) =0= O(p)=Aop+Bo, R(r)=Colnr+Do,

=
In the p-independent case, V(r)=CiInr+D1
In the p-dependent case, ®(¢p)=Ap+B, V(r,p)=(Clnr+D)(Ap+B)

Eg. Consider a very long coaxial cable. The inner conductor has a radius a and is
maintained at a potential Vo. The outer conductor has an inner radius b and is
grounded. Determine the potential distribution in the space between the

conductors. [EBER%]
(Sol.) V(b)=0, V(a)=V, =C,n(b) +C, =0, C,/n(a)+C, =V,

C=— Vo _c

In(b/a)

~VyInb

In(b/a)’ " V)= Inztl)o/a)ln(%j




Eg. Two infinite insulated conducting planes maintained at potentials 0 and Vo
form a wedge-shaped configuration. Determine the potential distributions for the

regions EZﬁiZZZﬂ [T BT
(Sol.) ; K
(@) V(p)=Ag+B, )
V(0)=0=B,=0 v
{V(a)v0 =Aa= A :% :>V(¢)=;¢,OS p<a
(@)=V, = Aa+B, v, 22, v,
(b) {V(Zﬂ' —o=2m+B AT BT =V(4)= 27T_05(27f—¢),

as¢p<2r

Eg. An infinitely long, thin, conducting circular tube of radius b is split in two
halves. The upper half is kept at a potential V=Vo and the lower half at V=-Vo.
Determine the potential distributions both inside and outside the tube.

V,0<g<rx

(Sol.) v<b,¢)={

Vo <p<2rw
(a) Inside the tube:
r<b=V,/(r,¢)= Ar'sinng =V(r,¢)= i Ar"sinng

il V,,0
r=b:>2 Aﬂb”sinnqﬁ:{ p0<g<z
n=1

“Var<¢<2rm

ZAVA
,n:odd
= A =<nad"
0,n:even

:V(r,¢)=% i %(%} sinng,r <b

7T nodd

(b) Outside the tube: r>b=V,(r,¢)=B,r"sinng =V(r,¢)= i B,r "sinng

> V,,0
r=b=> Bnb"sinnqﬁ:{ oW0<g=<z
n=1

{4V°b ,n:odd

“Vor<¢<2n

=B =

h nrzx

0,n:even

:>V(r,¢):% Zw: %[%)nsin ng,r>b

T nZodd



Eg. A long, grounded conducting cylinder of radius b is placed along the z-axis in

an initially uniform electric field E =xE,. Determine potential distribution

V(r,p) and electric field intensity E(r,#) outside the cylinder. Show that the
electric field intensity at the surface of the cylinder may be twice as high as that
in the distance, which may cause a local breakdown or corona (St. Elmo’s fire.)

[FFRIEERT ~ =%

(Sol.) V(r,¢)=—Eorcos¢+iBnr‘” cosng (Atr>>b, E=3E,, V =—E,rcosg)
n=1

At r=b:V(r,¢)=-Ebcosg+> Bb"cosng=0=>B, =Eb?,B, =0 forn=1.
n=1

2

b
Outside the cylinder, T=b:V(r.¢)= —Eof[l—FJCOW

2 2
E(r,p)=-VV =4,E, £%+1jc05go+é¢Eo (?—2—1jsingo



4-4 Boundary-Value Problems in Spherical Coordinates

2
vzvzizi[Rzﬁ} 1 i[sineﬂj+%a\£:
R OR R ) R®sing 06 00 ) R°sin“0 o¢

2

Assume ¢-independent: aa—¢ =0, V(r,0)=R(r)O(6H)

2

2 d ;Friz(r) o dF;(rR) _K2R(r)=0, %[sin ad(j_t(f)} +n(n+1)@(9)sin(¢)=0, and

k?=n(n+1)— R()=Anr™+Bnr™, @(6)=Pn(cosd)—V(r,0)=[Anr"+Bnr"1]Pn(cosd)

Table of Legendre’s Polynomials

n P (cos@)
0 1
1 cosd
2 1 (3cos’ 0-1)
2
3 1(5cos349—3cos(9)
2

Eg. An infinite conducting cone of half-angle a is maintained at potential Vo and
insulated from a grounded conducting plane. Determine (a) the potential
distribution V(#) in the region a<@<n/2, (b) the electric field intensity in the
region a<f<m/2, (c) the charge densities on the cone ‘

surface and on the grounded plane. - k\
(Sol.)

9 [singdY =o,d—V=_C—1:>v(9):clen tanf +C,
de de dg sin@ 2

0

V()= len(tan Zj +C, =V,
=

v[’;j = Clﬂn[tan Zj +C,=0 ¢ o

(a)

O=a:p, =eE(a)= £V
= L v . Vv, all..
E=-a,—=-a R¢n| tan| — | |sin @
(b) ’ RdO 0 a , (o) 2
an{tan Hsin& v
9:%:,05 :_SoE(ﬂ.jz— £oVo



Eg. An uncharged conducting sphere of radius b is placed in an initially uniform

electric field E =2E,. Determine the potential distribution V(R,0) and the

electric field intensity E(R,8) after the introduction of the sphere. [FrLLIZEHH]
(Sol.) v(b,0)=0

Electric field lines

If R>>b,V(R,0)=-E,z = —E,Rcos@
V(R.6)=Y[AR" + BRI, (cosh), Rz |
=
SN
|
— —E,RR(cosd)+ i B,R"™P (cos#),R=b
('sphere is uncharged, ”;:: 0)
|

- (%_ EOch o@Jri2 BR"P(cod)R>b

R=h, 0= (% - Eob)cosﬁ+ > B,b™P,(cosd)= B, = E,b*, B, =0, n>2,

n=2

. V(R,0)= —E{l—[%f}RcosH, R>D

= R . . oV . oV
E(R,0)=4,E, +4,E, =-W(R,0) =4, - — NV
( ) azEg +ayk, ( ) a‘R( aRJ"‘ag[ R@@j

bY’ by’
= éREO{H 2(—) }cos&—éﬁ{l—(—} }sin 6,R>b
R R

A dipole moment P = 247¢b’E, is at the center of the sphere. Surface charge

density is  £,(0)= &Eqz._, = 35,E, 056



4-5 Capacitors and Capacitances

Q=CV<C=Q/V
Eg. A parallel-plane capacitor consists of two parallel conducting plates of area S
separate by uniform distance d, the space between the plates is filled with a
dielectric of a constant permittivity. Determine the capacitance.

(Sol) p.=o, E=-yZo—y
&

Dielectric

i (perm‘inivity €) Area S

4 i

) s _)_ | ,\Q . _Q dT+ +/+ + |+ |+
B Y E'dl_.l.o(_yg}(ydvj_gd i :

primie s

C _Q_ SE. In this problem, E = —9!
v “d d

Eg. A cylindrical capacitor consists of an inner conductor of radius a and an
outer conductor of radius b is filled with a dielectric of permittivity &, and the
length of the capacitor is L. Determine the capacitance of this capacitor.

(SOI) E = aA E = Q ’ Dielectric, ¢ - ; ,i_{’,.'

- 2w?) oo Qe

2wl \a

Eg. A cylindrical capacitor of length L consists of coaxial conducting surface of
radii ri and ro. Two dielectric media of different dielectric constants &r1 and ér,
and fill the space between the conducting surface. Determine the capacitance. [&

RYTERT ~ S5 EEED]

(Sol.) arL(s,e,, +&,6,,) E=p L =E=

fi P fo
V=-| BEdr=—F———In| =
L ' Mo(grl +5r2) n(ri J

C — pIL — w0(8r1+8r2)L
\ In(r, /)




Eg. A spherical capacitor consists of an inner conducting sphere of radius Ri and
an outer conductor with a spherical wall of radius Ro. The space in between them
is filled with dielectric of permittivity &. Determine the capacitance. Assuming the
earth to be a large conducting sphere (radius=6.37x10%m) surrounded by air,
find the capacitance of the earth and the maximum charge that can exist on the
earth before the air breaks down.

(Sol) E=a E —a 2

47zR? Dlalectie. 4
v:—j (ade j : R (1 _1
R, 47z;:R 4z (R R,
_9 A
VAT
R R

For an isolating conductor sphere with R; , R, - «,C =4mR,

C=dm,R = 47[X%X109 % (6.37x10° x10°) = 7.08x10~*  (F)
T

Quax

7 R?
Eg. Determine the capacitance per unit length
between two long, parallel, circular conducting
wires of radius a. The axes of the wires are
separated by a distance D. [& K ERF]

E, =3x10° = = Q. =1.35x10"° (C)

P a Py a

Sol) V, = h—, V, =——/n—

(Sol.) Va o d 7 2z d
2

c=_1t_-_= ,d:D—dizD—%,d:%(D+\/D2—4a2)

V,-V, (n(d/a)

c= ad - (Fim)

£n[(D/2a)+ (D/Za)z—l} cosh™(D/2a)

Eg. A straight conducting wire of radius a is parallel to and at height h from the
surface of the earth. Assume that the earth is perfectly conducting; determine the
capacitance and the force per unit length between the wire and the earth.

_ _ TE _ & o F
(Sol.) D=2h, C COShfl(D/Za) coshl(h/a)(%n)




Series or parallel connection of capacitance:

Ci C Ch Cis
_.l | | | ____{ : | |
+Q EQ +Q| QO +Q! -0 +Q_| QO

4 > V >
o
+ - - -
v _ Qe e et 1T 1 ;1
Csr C1 CZ Cs n Csr Cl 2 3 n
Cl Q=Q1+Q2+ ...... +Qn
—@I ~0 =C,V=CV+C\V +-----. +CV

2

C
%0, I—Qz ' Cy

Chn
‘ +Qn —Qn

+0-

S

o}
+ =



4-6 Electrostatic Energy
To remove Q1 from infinite to a distance Ri2 from Q2, the amount of work required is

Q Q, 1
W, =Q.V, = _ —QV, ==(QV, +QV
2 QZ 2 QZ 47ZE'OR12 Ql 47ZE'OR12 Ql 1 2(Q1 1 QZ 2)
induction 1 N N Q
— 0 SW, =)' Q,V,, Wwhere V, = —L
= 7 jAG#) R

Eg. Find the energy required to assemble a uniform charge of radius b and

volume charge density p. [ EBH]
Qr 4 s

Sol.) V, = = p- 7R

( ) R 47ZZC,‘OR QR p3

dQg = p47R*dR, dW =V, dQ, =3—sz drR

215
W:IdWZ;_EPZI;R4dR:M

£ 15¢,

A 3Q°
=p—b®, W= J
Q=r7y 20mp )

Eg. According to We:%_mv,dev: %HL[V 5)\/dv, show that the stored electric

energy is W, = %”J;B E dv

(Proof) *.- v-(v szvvfn D-VV, .. vv-ﬁ:v-(v 5)—5-VV

oW =2V B Jav- 2 [[[B-vvav= 2 ffv Boads [[[B-E oy

R R? 279 v

N

D
2

v - [ v

Note: 1. Sl unit for energy: Joule(J) and 1 eV =1.6x1071J.
2. Work (or energy) is a scalar, not a vector.

N

o o 1
IfD = ¢ E, thenW, =§M-€E

2

Electrostatic energy density: we==D-E = %g E

N |~




Eg. A parallel-plate capacitor of area S and separation d is charged by a d-c
voltage source V. The permittivity of the dielectric is & Find the stored
electrostatic energy.

Vv
(Sol) E=—.

e (oo {503 o5

Eg. Use energy formulas to find the capacitance of a cylindrical capacitance
having a length L, an inner conductor of radius a, an outer conductor of inner
radius b, and dielectric of permittivity ¢ .

2 2
(Sol) E=a, _—j ( ) (L27rdr) = Q" pdr_ Q |n(9j,
2mLr dlda v 4ml \a
2 2 Dielectric, ¢
@ _Q |n(9jz>cz 2reL P
2C 4m=L \a |

4-7 Electrostatic Forces and Torques
Electrostatic force and torque due to the fixed charge:

— -
I

dW = F,-d | is mechanic work done by the system, it costs the stored energy.

- -

AW, =—dW =—F,-d | =(YW,)-d I, .. F,=-VW, (N)

) W _0fQT)_Q°C _ow,
(FQ)._ a al[zcj_zcz a’ dw = (7,) dg = (T,), = 26

Electrostatic force and torque due to the fixed potential:

dW, = SV,dQ, , dw =F,-d T, dw, :%kaqu _Law
k k

AW +dW, = dW, :dW:%dW —dW, =F -d

— — 2
E_vw, (1) = oW, (Fj awe:_(lcvzj_v oC Q26C
* T og 2 2 o 2cC? al




Eg. Determine the force on the conducting plates of a charged parallel-plate
capacitor. The plates have an area S and separate in air by a distance x.

(Sol.) (a) Assuming fixed charge, W, = %QV = %QEXX,

__9(1 __ @
(FQ)X - ax[zQEXXj_ 2¢,5

(b) Assuming the fixed potential,
2 2
(FV)X _ 6We zg(lcvzj:\/_g(f,'OS]:_gosv

X  Ox\ 2 2 ox\ X 2x2

" Q=CV = SOjV Ry = (R,

Eg. A parallel-plate capacitor of width w, length L, and separation d is partially
filled with a dielectric medium of dielectric constants &r. A battery of Vo volts is
connected between the plates. (a) Find D, E, ps in each region. (b) Find
distance x such that the electrostatic energy stored in each region is the same. [&

REH]

g s
_ V R V V ,
El:_y O’Dl:—ygogr_o’psl:gogr_o i_ ‘i‘ TV
(Sol.) (a) d d q .
st
E,=-9-2,D,=-V&, —2,p,=6-2 (b) —L=""=1=x=
2 yd 2 Y&, d Ps2 04 ( )Wez - e

Eg. A parallel-plate capacitor of width w, length L, and separation d has a solid
dielectric slab of permittivity ¢ in the space between the plates. The capacitor is
charged to a voltage Vo by a battery. Assuming that the dielectric slab is
withdrawn to the position shown, determine the force action on the slab. (a) with
the switch closed, (b) after the switch is first opened. [& KB ~ JFEAEF]

_ W
(Sol.) @ W, :%cvoz, C :%[&X+EO(L—X)]:> F.=VW, = f(\ég—iz k\/z—"d(g—go)
(b)
w.-L, Fp-vw =L 2( 1)l
2C 2 a\C) " 2d %

=




4-8 Resistors and Resistances
Ohm’s law: V=RI

V=E£:>E=\i,|=j J~ds”=Js:>J=l=a\i:>V=(ijl=R|
AR S oS
ST
oS R ¢

Power dissipation: P =J..|.E-jdv=_|.|§-d2j'.|.5-d§ =-VI=-I°R

V'

Eg. Along round wire of radius a and conductivity ¢ is coated with a material of
conductivity 0.1¢. (@) What must be the thickness of the coating so that the
resistance per unit length of the uncoated wire is reduced by 50%? (b) Assuming
a total current | in the coated wire, find J and E in both the core and the coating

material. [EREAEBTFI

1 1
SOI. R =, R =
(Sol) R, om?’ ? or(a+b)?—a?]

(8 R =R, =b=(/11-1f,

|
OV hi=l =0, =5 5 =ck, b= 1=0.10E,
—J,=10J,, E,=E,

Eg. A d-c voltage of 6V applied to the ends of 1km of a conducting wire of 0.5mm
radius results in a current of 1/6A. Find (a) the conductivity of the wire, (b) the
electric field intensity of the wire, (c) the power dissipation in the wire, (d) the
electron drift velocity, assuming electron mobility in the wire to be

1.4x10%(m?/ V -s).

(Sol.) (a) Rz%z\T/:a:SE—\I/:S.Mle(S/m), (b)E=V7:6><10’3(V/m), ()

P=VI =1Watt, (d) v, = E =8.4x10°(m/sec)



Calculation of resistance:
vzv:o:>v:E:—W:J:aﬁ:?:ﬁids:R:V/l

Eg. A conducting material of uniform thickness h and conductivity &, has the
shape of a quarter of a flat circular washer, with inner radius a and outer radius
b. Determine the resistance between the end faces. [ KB

(Sol.) V3 =0,V=0at ¢=0,V=Voat ¢=%

d*V _ g, V=ciptc 2, bE.

=0, V=C1 2y =04,
dg? v V== ¢ oo ’
T = . oV . 20V, 6

. V
|=L\]-d5 h:dr ZOhVO |n91 R:T():Lb

T r T a Zmln()
a

Eg. A ground connection is made by burying a hemispherical conductor of radius
25mm in the earth with its base up. Assuming the earth conductivity to ¢=10%
S/m, find the resistance of the conductor to far-away points in the ground. [ X

EXE
- I = I b I
(Sol. R 27R? RomR2 = ° L 2 100

rRoYo_ 1 _ _61 —— =6.36x10°.
|~ 2mb 27(10°)(25%x10°°)

ﬁD ds ﬁgEdE

Relation between Rand C: C =

—jE dl —jE dr’
R=\i=_IiE.dj= _Igdiﬁ, . |Re=2-E
| ﬁs\]-ds :f:fSaE-ds G o

Eg. Find the resistance between two concentric spherical surfaces of radii R1 and
R2 (Ri<R2) if the space between the surfaces is filled with a homogeneous and
isotropic material having a conductivity o.

4z 1 ¢
: RC—— = R==—.2 => R=— (—-—
1 1 o C o 4m(R1 Rz)

(Sol) C=



Eg. Find the leakage resistance per unit length (a) between the inner and outer
conductors of a coaxial cable that has an inner conductor of radius a, an outer
conductor of inner radius b, and a medium with conductivity &, and (b) of a
parallel-wire transmission line consisting of wires of radius a separated by a
distance D in a medium with conductivity ¢. [&RIAZERF]

(Sol.)

27 & 1 b s 1 D
a) C=—— R=c-——In=1|0 3 E ., R=-% - = cosh (=
(@) | b R 5 In(aj () c- 5 cos (Za)
n(a) cosh (E)



4-9 Inductors and Inductances
Mutual flux: ®,, =” B,-dS, =L,l, (Wh)
S5

N, D, :ﬂ (H)

General mutual inductance: L, = I I
1 1

Self-Inductance: L, = %

1

N.N 7.d7
Neumaun formula: L, = Ho™ N §§d£1d€2
Ar

Eg. Assume that N turns of wire are tightly wound on a toroidal frame of a
rectangular cross section. Then, assuming the permeability of the medium to be
uo, find the self-inductance of the toroidal coil. [& AZEH]
(Sol.)

dl =a,rdg, {B-dl =[ Brdg=2arB = y,NI —p= N
C

2ar
:>q)=.”'|§.d§='“o_Nlh b£=LN|h|n(9)
S 2r 2 r 2r a
2
L N®_ pN h|n(9)
| 2z a

Eg. Find the inductance per unit length of a very long solenoid with air core
having n turns per unit length. And S is the cross-sectional area.

ey

H‘HWI \ql,‘\m il @
(Sol.) B=pgnl, ®=BS=ynSl A'=nd=yun?Sl, L'=un’S !ﬂﬂwfimﬂﬂ' ®
Eg. Two coils of N1 and N2 turns are wound concentrically on a straight
cylindrical core of radius a and permeability . The windings have lengths |1 and
I2, respectively. Find the mutual inductance between the coils.

N

(Sol.) @, :/J(E_l)(ﬂaz)lli Ap =N, D, =£ﬁN1N27za2I1

1 1

A
==L, =—2 :gﬁNlNzﬂaz

Il 1



Eg. Determine the mutual inductance between a very long, straight wire and a

conducting circular loop. [&AEBH - JFARYEERT]
(Sol.)

Ho

Batpis
27(d + rcosd)

27rdr — 4l (d - /—dz—bz)

y7, rdadr
A= OII d+rcosd I\/

L = uy(d —VJd? —b?)

—d—

Eg. Determine the mutual inductance between a conducting triangular loop and

a very long straight wire.

(Sol.)
B-4,2L, A-w=[B.ds, where dS=-4,zdr
2rr s
=v3(d+b-r)
A=‘/§“O'j"+b1(d b—r)dr = *F”O NoHol [(d +b)In(L+b/d)—b]
27
L=Iﬁ=@[(d+b)|n(1+b/d)—b]
/A

'*’—vH*dr

«——d + b

Eg. Determine the mutual inductance between a very long, straight wire and a

conducting equilateral triangular loop. [53%]

(Sol.)
E§=é®ﬂ—°|=é®8®
2ar
d+ﬁ 2 VK] J_b
=| 2 —d)dr —b din(l+—
A=), 7 By (r-dyar [ﬂ[ N+~ ol
Ay 3 J3b

L="= 3ﬂ[7b—dln(1 —)]

«d "

s 2



Eg. Find the mutual inductance between two coplanar rectangular loops with

parallel sides. Assume that h1 >> hz (h2 > w2 > d). (& AEBHF)
(Sol.)

A, = Loh, | jwz 1 1 dx — Hoh,1 In(W2 +d  w +d
2r d+x w,+d+X 2r d w, +w, +d hy
L A, [(W L +d)(w, +d)]
2 27r d(w, +w, +d) |
ey

o

d w>

Eg. A rectangular loop of width w and height h is situated near a very long wire
carrying a current i1. Assume i1 to be a rectangular pulse. Find the induced

current iz in the rectangular loop whose self-inductance is L.
(Sol.)

L12 d|l _, di

—2 4+ Ri,,
dt 2

where L, = _—_ Id+wﬂ°1d = In(1+—)

di, le e ot Kh

t=0, Ld—+ Ri, =L,Lot) =1, = W—
RT
t=T, 1, = Liz I.e - | when-lyis applied

R
I —(f)(t—T)

T, i, =— =P

,
|



4-10 Magnetic Energy

e XYL = i)lk@k:%mmdv-

j=1 k=1

di, :
Let V, =L, — ot LW, = IVllldt— Ll_[ i, di, = :%Ipl: Magnetic energy
o di 2 1
Similarly, ~ V,, = LZlﬁ =Wy, = [V ldt = Lyl [ di, = Ly, 1,1,

1
And WZ:EL?_I; :Wm:%L1I12+L21I1I2+%L2I22_ ZZLJK il

j=1 k=1

Generally, W,_ :%ii Lyl = %i when @, =)L,

C @, ”BdS' {Adz

k

:%i JAd = [[[A-Jav (aldl =348 )dl =3 v,)
k=1 v

Cx

" V- (AxH)=H - (VxA -A-(VxH)= A-(VxH)=H - (VxA)-V-(Ax H)
And J=VxH=A-J=H-B-V-(AxH)

Leppe sy Lepoe oo o, 41 o1
:>wm:EIVJJH-de—EE(AxH)-ands as R_mmwocﬁ, lET==
d§ocR2:>—%§(AxI:|)-éndS'—>0

W :%'UJ‘H : Edv':IJJWmdv'




Eg. Determine the inductance per unit length of an air coaxial transmission line
that has a solid inner conductor of radius a and a very thin outer conductor of

radius b. [ERIAEBIAT]
(Sol.)

|2
Wmlzij'anandr:”"—Jaﬁdr:ﬂo—
244, *° 4ma" +0

|2 2
Winz= —— [ B2 2rclr = 201 g = S TN VAV - B A
214, 2 4z Car dr a I 8x

Eg. Consider two coupled circuits having self-inductance L1 and L2, which carry
currents I and Iz, respectively. The mutual inductance between the circuits is M.
a) Find the ratio I1/l2 that makes the stored magnetic energy Wm a minimum.

b) Show that M <./LL, . GEAIZ LA

(Sol) W, =%L1|f +MI,l, +%L2I22

2 2
@ W, = 2Ly oMy s 1= e s omxe 1], x= 1
2 I, I, 2 l,
2
dw, :O:I—2(2L1x+2M): X=L=—M for minimum W,
dx 2 I,
IZ MZ
(b) (Wm)min:?Z(—T+ L,)>0=M <,/LL,
4-11 Magnetic Forces and Torques
Force due to constant flux linkage:
E,-d7 = —dW, =—(VW,)-d7 = F, =YW, and (T,), = - on
o¢

Force due to constant current:
dw, =" 1, 'd®, =dW +dW,
k

AW, =2 1,0, =2 dW, = dW = F,-dl = dW, = (VW,)-dl = F, =W,
k

Torque in terms of mutual inductance:
1

"3

W

1 0
Ll|12+|_12|1|2+§|_2|22:> FI = |1|2(VL12): TI = |1|2 al-;



Eg. Acurrent | flows in a long solenoid with n closely wound coil-turns per unit
length. The cross-sectional area of its iron core, which has permeability g, is S.
Determine the force acting on the core if it is withdrawn to the position. [5%%

PRE]
(Sol.)

1 5 1 22 1 212 1 ‘2 2
Wm—EHI,uH e, W (X-+ ) =W () = & ot M1 == o0 ¥)S8% = g1 41, =1’ 8K

oW u
=(F), =—2=2%(y -1)n?I*S
( I)x ax 2 (lur )
Magnetic torque: T=mxB  (B=B.+B;, m| B.=mxB.=0)

df=>?dF2bsin¢=R(Idlalsin¢)2bsin¢=22Ib23|sin2¢d¢ < x g l . i

T =[dT = R21b°B, [ "sin’ ¢d¢ = R1 (w*)B, = %mB,

3
o

=T =mx

Eg. A rectangular loop in the xy-plane with sides biand bz carrying a current |
has in a uniform magnetic field B =B+ yB, + 2B, . Determine the force and

torque on the loop.

(Sol.) T=mxB=Ihb,(%B, - YB,)




4-12 Magnetic Circuits

Define V., = NI : mmf, & =BS: magnetic flux, R = I—: reluctance

0 NI, =YR®,. (2 V-B=

HS
0,.. > ® =0
]

Eg. (a) Steady current I1 and I2 flow in windings of N1 and N2z turns, respectively,
on the outside legs of the ferromagnetic core. The core has a cross-sectional area
Sc and permeability x#. Determine the magnetic flux in the center leg.

(Sol.)

I
R, =, N
1 P 2

Loop1: N, I, =(R, +R,)D, + RO,

Loop2: NI, —N,I, = R,®, + (R, +R,)D,

_ RN L RN
RR, + RN, + RN,

1

0 P _ G
AL N aE A=l i)
—b‘ !

I | |
,’_I_
N, g

|
|
I3
|
|

Eg. Consider the electromagnet in Figure. In which a current I in an N-turn coil
produce a flux @ in the magnetic circuit. The cross-sectional area of the core is

S. Determine the lifting force on the armature.

(Sol.)
B? ®?
dWm :d(\Nm)aira :2(_de):
o 214 HoS
o NE
L _ N(I) _ Rc +2y,u05
I I
2
F, = W, __y @ and
dy HoS
d 1 1 NI
F=y—((LI?)=-y 2
' ydy(2 ) yyOS(RC+2y/,uOS)

dy

@2
y
HoS




