Chapter 5 Transmission Lines

5-1 Characteristics of Transmission Lines

Transmission line: It has two conductors carrying current to support an EM wave, which is TEM or quasi-TEM mode. For the TEM mode, $\vec{E}=-Z_{\text {TEM }} \hat{a}_{n} \times \vec{H}$, $\vec{H}=\frac{1}{Z_{\text {TEM }}} \hat{a}_{n} \times \vec{E}$, and $Z_{T E M}=\eta=\sqrt{\frac{\mu}{\varepsilon}}$.

The current and the EM wave have different characteristics. An EM wave propagates into different dielectric media, the partial reflection and the partial transmission will occur. And it obeys the following rules.

Snell's law: $\frac{\sin \theta_{t}}{\sin \theta_{i}}=\frac{\beta_{1}}{\beta_{2}}=\frac{n_{1}}{n_{2}}=\frac{v_{p 2}}{v_{p 1}}=\frac{\eta_{2}}{\eta_{1}}=\sqrt{\frac{\varepsilon_{1}}{\varepsilon_{2}}}=\sqrt{\frac{\varepsilon_{r 1}}{\varepsilon_{r 2}}}$ and $\theta_{\mathrm{i}}=\theta_{\mathrm{r}}$

The reflection coefficient: $\Gamma=\frac{E_{r 0}}{E_{i 0}}$ and the transmission coefficient: $\tau=\frac{E_{t 0}}{E_{i 0}}$

$$
\left\{\begin{array}{l}
\Gamma_{\perp}=\frac{\eta_{2} / \cos \theta_{t}-\eta_{1} / \cos \theta_{i}}{\eta_{2} / \cos \theta_{t}+\eta_{1} / \cos \theta_{i}}=\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}=\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)} \\
\tau_{\perp}=\frac{2 \eta_{2} / \cos \theta_{t}}{\eta_{2} / \cos \theta_{t}+\eta_{1} / \cos \theta_{i}}=\frac{2 n_{1} \cos \theta_{i}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}=\frac{2 \cos \theta_{i} \sin \theta_{t}}{\sin \left(\theta_{t}+\theta_{i}\right)}
\end{array}\right.
$$

for perpendicular polarization (TE)

$$
\left\{\begin{array}{l}
\Gamma_{\|}=\frac{\eta_{2} \cos \theta_{t}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}=\frac{n_{1} / \cos \theta_{i}-n_{2} / \cos \theta_{t}}{n_{1} / \cos \theta_{i}+n_{2} / \cos \theta_{t}}=\frac{\tan \left(\theta_{t}-\theta_{i}\right)}{\tan \left(\theta_{t}+\theta_{i}\right)} \\
\tau_{\|}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}}=\frac{2 n_{1} / \cos \theta_{t}}{n_{1} / \cos \theta_{i}+n_{2} / \cos \theta_{t}}=\frac{2 \cos \theta_{i} \sin \theta_{t}}{\sin \left(\theta_{i}+\theta_{t}\right) \cos \left(\theta_{i}-\theta_{t}\right)}
\end{array}\right.
$$

for parallel polarization (TM)

In case of normal incidence, $\left\{\begin{array}{l}\Gamma_{\perp}=\Gamma_{/ /}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} \\ \tau_{\perp}=\tau_{/ /}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}\end{array}\right.$, where $\eta_{1}=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}$ and $\eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}$.

Equivalent-circuit model of transmission line section:

$R(\Omega / m), L(H / m), \quad G(S / m), C(F / m)$
Transmission line equations: In higher-frequency range, the transmission line model is utilized to analyze EM power flow.

$$
\left\{\begin{array} { l }
{ - \frac { v (z + \Delta z , t) - v (z , t) } { \Delta z } = R i (z , t) + L \frac { \partial i (z , t) } { \partial t } } \\
{ - \frac { i (z + \Delta z , t) - i (z , t) } { \Delta z } = G v (z , t) + C \frac { \partial v (z , t) } { \partial t } }
\end{array} \Rightarrow \left\{\begin{array}{l}
-\frac{\partial v}{\partial z}=R i+L \frac{\partial i}{\partial t} \\
-\frac{\partial i}{\partial z}=G v+C \frac{\partial v}{\partial t}
\end{array}\right.\right.
$$

Set $v(z, t)=\operatorname{Re}\left[V(z) e^{j \omega t}\right], i(z, t)=\operatorname{Re}\left[I(z) e^{j \omega t}\right]$

$$
\Rightarrow\left\{\begin{array} { l }
{ - \frac { d V } { d z } = (R + j \omega L) I (z) } \\
{ - \frac { d I } { d z } = (G + j \omega C) V (z) }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{d^{2} V(z)}{d z^{2}}=(R+j \omega L)(G+j \omega C) V(z)=\gamma^{2} V(z) \\
\frac{d^{2} I(z)}{d z^{2}}=(R+j \omega L)(G+j \omega C) I(z)=\gamma^{2} I(z)
\end{array}\right.\right.
$$

where $\gamma=\alpha+j \beta=\sqrt{(R+j \omega L)(G+j \omega C)} \Rightarrow V(z)=V_{0}^{+} e^{-k}+V_{0}^{-} e^{\kappa}, I(z)=I_{0}^{+} e^{-k}+I_{0}^{-} e^{\kappa}$

Characteristic impedance: $Z_{0}=\frac{V_{0}{ }^{+}}{I_{0}{ }^{+}}=-\frac{V_{0}{ }^{-}}{I_{0}{ }^{-}}=\frac{R+j \omega L}{\gamma}=\frac{\gamma}{G+j \omega C}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}$
Note:

1. International Standard Impedance of a Transmission Line is $\boldsymbol{Z}_{0}=\mathbf{5 0 \Omega}$.
2. In transmission-line equivalent-circuit model, $\boldsymbol{G} \neq \mathbf{1} / \boldsymbol{R}$.
3. $\gamma=Z_{0} \cdot(G+j \omega C)=(\mathbf{R}+j \omega L) / Z_{0}$

Eg. The following characteristics have been measured on a lossy transmission line at 100 MHz : $Z_{0}=50 \Omega, \alpha=0.01 \mathrm{~dB} / \mathrm{m}=1.15 \times 10^{-3} \mathrm{~Np} / \mathrm{m}, \beta=0.8 \pi(\mathrm{rad} / \mathrm{m})$. Determine R, L, G, and C for the line.
(Sol.) $50=\sqrt{\frac{R+j 2 \pi 10^{8} L}{G+j 2 \pi 10^{8} C}}, 1.15 \times 10^{-3}+j 0.8 \pi=\sqrt{(R+j \omega L)(G+j \omega C)}=50 \cdot\left(G+j 2 \pi 10^{8} C\right)$
$\Rightarrow C=\frac{0.8 \pi}{2 \pi \times 10^{8} \times 50}=80(\mathrm{pF} / \mathrm{m}), \quad G=\frac{1.15}{50} \times 10^{-3}=2.3 \times 10^{-5}(\mathrm{~S} / \mathrm{m})$,
$R=2500 G=0.0575(\Omega / m), L=2500 C=0.2(\mu F / m)$

Eg. A d-c generator of voltage and internal resistance is connected to a lossy transmission line characterized by a resistance per unit length R and a conductance per unit length G. (a) Write the governing voltage and current transmission-line equations. (b) Find the general solutions for $V(z)$ and $I(z)$.
(Sol.) (a) $\omega=0 \Rightarrow \gamma=\sqrt{(R+j \omega L)(G+j \omega C)}=\sqrt{R G}$
$\frac{d^{2} V(z)}{d z^{2}}=R G V(z), \frac{d^{2} I(z)}{d z^{2}}=R G I(z)$
(b) $V(z)=V_{0}^{+} e^{-\sqrt{R G} z}+V_{0}^{-} e^{\sqrt{R G} z}, I(z)=I_{0}^{+} e^{-\sqrt{R G} z}+I_{0}^{-} e^{\sqrt{R G} z}$

Lossless line ($R=G=0$):
$\gamma=\alpha+j \beta=j \omega \sqrt{L C} \Rightarrow \alpha=0, \quad \beta=\omega \sqrt{L C}, \quad v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}, \quad Z_{0}=\sqrt{\frac{L}{C}}=R_{0}+j X_{0} \Rightarrow R_{0}=\sqrt{\frac{L}{C}}, \quad X_{0}=0$
Low-loss line $(\boldsymbol{R} \ll \omega L, G \ll \omega C)$:
$\gamma=\alpha+j \beta \approx j \omega \sqrt{L C}\left(1+\frac{1}{2 j \omega}\left(\frac{R}{L}+\frac{G}{C}\right)\right] \Rightarrow \alpha=\approx \frac{1}{2}\left(R \sqrt{\frac{C}{L}}+G \sqrt{\frac{L}{C}}\right), \beta=\omega \sqrt{L C}, v_{p} \approx \frac{1}{\sqrt{L C}}$
$Z_{0} \approx \sqrt{\frac{L}{C}}\left[1+\frac{1}{2 j \omega}\left(\frac{R}{L}-\frac{G}{C}\right)\right]$

Distortionless line $(R / L=G / C)$:

$\gamma=\alpha+j \beta=\sqrt{\frac{C}{L}}(R+j \omega L) \Rightarrow \alpha=R \sqrt{\frac{C}{L}}, \quad \beta=\omega \sqrt{L C}, v_{p}=\frac{1}{\sqrt{L C}}, Z_{0}=\sqrt{\frac{L}{C}}$
Large-loss line ($\omega L \ll R, \omega C \ll G$):
$\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}=\alpha+j \beta=\sqrt{R G} \cdot\left(1+j \frac{\omega L}{R}\right)^{1 / 2}\left(1+\frac{j \omega C}{G}\right)^{1 / 2} \approx$
$\sqrt{R G}\left[1+\frac{j \omega}{2}\left(\frac{L}{R}+\frac{C}{G}\right)\right]$
$\therefore \alpha \approx \sqrt{R G}, \beta \approx \frac{\omega}{2}\left(L \cdot \sqrt{\frac{G}{R}}+C \cdot \sqrt{\frac{R}{G}}\right), \quad v_{p}=\frac{1}{2}\left(L \cdot \sqrt{\frac{G}{R}}+C \cdot \sqrt{\frac{R}{G}}\right)$
$Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}=\sqrt{\frac{R}{G}} \cdot\left(1+\frac{j \omega L}{R}\right)^{1 / 2} \cdot\left(1+\frac{j \omega C}{G}\right)^{-1 / 2}=\sqrt{\frac{R}{G}} \cdot\left[1+\frac{j \omega}{2}\left(\frac{L}{R}-\frac{C}{G}\right)\right]$

Eg. A generator with an open-circuit voltage $v_{\mathrm{g}}(t)=10 \sin (8000 \pi t)$ and internal impedance $Z_{\mathrm{g}}=40+j 30(\Omega)$ is connected to a 50Ω distortionless line. The line has a resistance of $0.5 \Omega / \mathrm{m}$, and its lossy dielectric medium has a loss tangent of $\mathbf{0 . 1 8 \%}$. The line is 50 m long and is terminated in a matched load. Find the instantaneous expressions for the voltage and current at an arbitrary location on the line.
(Sol.) $0.18 \%=\frac{\sigma}{\omega \varepsilon}=\frac{G}{\omega C} \Rightarrow C=2.21 \times 10^{-2} G, V_{\mathrm{g}}=10 j$
\because Distortionless, $\therefore \frac{L}{R}=\frac{C}{G} \Rightarrow L=1.11 \times 10^{-2} \mathrm{H} / \mathrm{m}, \alpha=R \sqrt{\frac{C}{L}}=\frac{R}{Z_{0}}=0.01 \mathrm{~Np} / \mathrm{m}$,
$\beta=\omega \sqrt{L C}=\omega L \sqrt{\frac{C}{L}}=\frac{\omega L}{Z_{0}}=5.58 \mathrm{rad} / \mathrm{m}, \gamma=\alpha+j \beta=0.01+j 5.58$
$V_{0}^{+}=\frac{Z_{0} V_{g}}{Z_{0}+Z_{g}}=\frac{5}{3}+j 5, V_{0}^{-}=0, \therefore V(z)=V_{0}^{+} e^{-\gamma}=\left(\frac{5}{3}+j 5\right) e^{-(0.01+j 5.58) z}$
$V(z, t)=\operatorname{Re}\left[V(z) e^{j 8000 \pi t}\right]=\frac{5 \sqrt{10}}{3} \cdot e^{-0.01 z} \cdot \cos \left(8000 \pi t-5.58 z+71.6^{\circ}\right)$
$I(z, t)=\frac{V(z, t)}{Z_{0}}=\frac{1}{2 \sqrt{10}} e^{-0.01 z} \cos \left(8000 \pi t-5.58+71.6^{\circ}\right)$

Relationship between transmission-line parameters:

$\gamma=\sqrt{(R+j \omega L)(G+j \omega C)} \approx j \omega \sqrt{L C}\left(1+\frac{G}{j \omega C}\right)^{1 / 2}=j \omega \sqrt{\mu \varepsilon}\left(1+\frac{\sigma}{j \omega \varepsilon}\right)^{1 / 2} \Rightarrow G / C=\sigma / \varepsilon$ and $\boldsymbol{L C}=\boldsymbol{\mu} \boldsymbol{\varepsilon}$

Two-wire line: $I=2 \pi a J_{s}, \quad P_{\sigma}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{2 \pi a}\right) \Rightarrow R=2\left(\frac{R_{s}}{2 \pi a}\right)=\frac{1}{\pi a} \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}}$
Coaxial-cable line: $I=2 \pi a J_{s i}=2 \pi b J_{s o}, \quad P_{\sigma i}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{2 \pi a}\right), \quad P_{\sigma o}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{2 \pi b}\right)$
$\Rightarrow R=\frac{R_{s}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{2 \pi} \sqrt{\frac{\pi \mu_{c}}{\sigma_{c}}}\left(\frac{1}{a}+\frac{1}{b}\right)$

Distributed Parameters of Two-Wire and Coaxial Transmission Lines

Parameter	Two-Wire Line	Coaxial Line	Unit
R	$\frac{R_{s}}{\pi a}$	$\frac{R_{s}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right)$	Ω / m
L	$\frac{\mu}{\pi} \cosh ^{-1}\left(\frac{D}{2 a}\right)$	$\frac{\mu}{2 \pi} \ln \frac{b}{a}$	H / m
G	$\frac{\pi \sigma}{\cosh ^{-1}(D / 2 a)}$	$\frac{2 \pi \sigma}{\ln (b / a)}$	S / m
C	$\frac{\pi \epsilon}{\cosh ^{-1}(D / 2 a)}$	$\frac{2 \pi \epsilon}{\ln (b / a)}$	F / m

Note: $R_{s}=\sqrt{\pi f \mu_{c} / \sigma_{c}} ; \cosh ^{-1}(D / 2 a) \cong \ln (D / a)$ if $(D / 2 a)^{2} \gg 1$. Internal inductance is not included.

Eg. It is desired to construct uniform transmission lines using polyethylene ($\varepsilon_{\mathrm{r}}=2.25$) as the dielectric medium. Assume negligible losses. (a) Find the distance of separation for a 300Ω two-wire line, where the radius of the conducting wires is

0.6 mm ; and (b) find the inner radius of the outer conductor for a 75Ω coaxial line, where the radius of the center conductor is 0.6 mm .
(Sol.) Two-wire line: $C=\frac{\pi \varepsilon}{\cosh ^{-1}(D / 2 a)}, L=\frac{\mu}{\pi} \cosh ^{-1}\left(\frac{D}{2 a}\right), a=0.6 m m, \varepsilon=2.25 \varepsilon_{0}$
$Z_{0}=300=\sqrt{\frac{L}{C}}=\frac{\cosh ^{-1}\left(\frac{D}{2 a}\right)}{\pi} \cdot \sqrt{\frac{4 \pi \times 10^{-7}}{2.25 \times \frac{1}{36 \pi} \times 10^{-9}}} \Rightarrow D \approx 25.5 \mathrm{~mm}$
Coaxial line: $C=\frac{2 \pi \varepsilon}{\ln (b / a)}, L=\frac{\mu}{2 \pi} \ln \left(\frac{b}{a}\right)$
$a=0.6 \mathrm{~mm}, Z_{0}=75=\sqrt{\frac{L}{C}}=\frac{\ln \left(\frac{b}{a}\right)}{2 \pi} \cdot \sqrt{\frac{4 \pi \times 10^{-7}}{2.25 \times \frac{1}{36 \pi} \times 10^{-9}}} \Rightarrow b=3.91 \mathrm{~mm}$

Parallel-plate transmission line:

$$
\left\{\begin{array}{l}
\vec{E}=\hat{y} E_{0} e^{-r}=\hat{y} E_{y} \\
\vec{H}=-\hat{x} \frac{E_{0}}{\eta_{0}} e^{-r}=\hat{x} H_{x}
\end{array}, \gamma=j \beta=j \omega \sqrt{\mu \varepsilon}, \eta=\sqrt{\frac{\mu}{\varepsilon}}\right.
$$

At $y=0$ and $y=d, E_{\mathrm{x}}=E_{\mathrm{y}}=0, H_{\mathrm{y}}=0$
At $y=0, \hat{a}_{n}=\hat{y},\left\{\begin{array}{l}\hat{y} \cdot \vec{D}=\rho_{s l} \Rightarrow \rho_{s l}=\varepsilon E_{y}=\varepsilon E_{0} e^{-j \beta z} \\ \hat{y} \times \vec{H}=\vec{J}_{s l} \Rightarrow \vec{J}_{s l}=-\hat{z} H_{z}=\hat{z} \frac{E_{0}}{\eta} e^{-j \beta z}\end{array}\right.$
At $y=d, \quad \hat{a}_{n}=-\hat{y},\left\{\begin{array}{l}-\hat{y} \cdot \vec{D}=\rho_{s u} \Rightarrow \rho_{s u}=-\varepsilon E_{y}=-\varepsilon E_{0} e^{-j \beta z} \\ -\hat{y} \times \vec{H}=\vec{J}_{s u} \Rightarrow \vec{J}_{s u}=\hat{z} H_{x}=-\hat{z} \frac{E_{0}}{\eta} e^{-j \beta z}\end{array}\right.$

Distributed Parameters of Parallel-Plate Transmission Line (Width $=w$, Separation $=d$)

Parameter	Formula	Unit
R	$\frac{2}{w} \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}}$	Ω / m
L	$\mu \frac{d}{w}$	H / m
G	$\sigma \frac{w}{d}$	$\mathrm{~S} / \mathrm{m}$
C	$\epsilon \frac{w}{d}$	$\mathrm{~F} / \mathrm{m}$

$\because \nabla \times \vec{E}=-j \omega \mu \vec{H}, \therefore \frac{d E_{y}}{d z}=j \omega \mu H_{x} \Rightarrow \frac{d}{d z} \int_{0}^{d} E_{y} d y=j \omega \mu \int_{0}^{d} H_{x} d y$
$\Rightarrow-\frac{d V(z)}{d z}=j \omega \mu J_{s u}(z) d=j \omega\left(\mu \frac{d}{\omega}\right)\left[J_{s u}(z) w\right]=j \omega L I(z) \Rightarrow L=\mu \frac{d}{w}(H / m)$
$\because \nabla \times \vec{H}=j \omega \varepsilon \stackrel{\rightharpoonup}{E}, \therefore \frac{d H_{x}}{d z}=j \omega \varepsilon E_{y} \Rightarrow \frac{d}{d z} \int_{0}^{w} H_{x} d x=j \omega \varepsilon \int_{0}^{w} E_{y} d x$
$\Rightarrow-\frac{d I(z)}{d z}=-j \omega \varepsilon E_{y}(z) w=j \omega\left(\varepsilon \frac{w}{d}\right)\left[-E_{y}(z) d\right]=j \omega C V(z) \Rightarrow C=\varepsilon \frac{w}{d} \quad(F / m)$
$\left\{\begin{array}{l}-\frac{d V}{d z}=j \omega L I \\ -\frac{d I}{d z}=j \omega C V\end{array} \Rightarrow \begin{cases}\frac{d^{2} V(Z)}{d z^{2}}=-\omega^{2} L C V(z) & \beta=\omega \sqrt{L C}=\omega \sqrt{\mu \varepsilon}, v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \varepsilon}} \\ \frac{d^{2} I(z)}{d z^{2}}=-\omega^{2} L C I(z) & Z_{0}=\frac{V(z)}{I(z)}=\sqrt{\frac{L}{C}}=\frac{d}{w} \sqrt{\frac{\mu}{\varepsilon}}=\frac{d}{w} \eta\end{cases}\right.$
Lossy parallel-plate transmission line: $G=\frac{\sigma}{\varepsilon} C=\sigma \frac{w}{d}$
Surface impedance: $Z_{s} \equiv \frac{E_{t}}{J_{s}}=\frac{E_{z}}{H_{x}}=\eta_{c}=R_{s}+j X_{s}=(1+j) \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}}$
$\Rightarrow P_{\sigma}=\frac{1}{2} \operatorname{Re}\left(\left|J_{s u}\right|^{2} Z_{s}\right)=\frac{1}{2}\left|J_{s u}\right|^{2} R_{s}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{w}\right)=\frac{1}{2} I^{2} R$
$R=2\left(\frac{R_{s}}{w}\right)=\frac{2}{w} \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}}(\Omega / m)$

Eg. Consider a transmission line made of two parallel brass strips $\sigma_{\mathrm{c}}=1.6 \times 10^{7} \mathrm{~S} / \mathrm{m}$ of width 20 mm and separated by a lossy dielectric slab $\mu=\mu_{0}, \varepsilon_{\mathrm{r}}=3, \sigma=10^{-3} \mathrm{~S} / \mathrm{m}$ of thickness 2.5 mm . The operating frequency is 500 MHz . (a) Calculate the R, L, G, and C per unit length. (b) Find γ and Z_{0}.
(Sol.) (a) $R=\frac{2}{w} \sqrt{\frac{\pi f \mu_{0}}{\sigma_{c}}}=1.11(\Omega / \mathrm{m}), \quad G=\sigma \frac{w}{d}=8 \times 10^{-3}(\mathrm{~S} / \mathrm{m})$
$L=\mu_{0} \frac{d}{w}=1.57 \times 10^{-7}(H / m), \quad C=\varepsilon \frac{w}{d}=2.12 \times 10^{-10}(F / \mathrm{m})$
(b) $\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}=18.13 \angle-0.41^{\circ}, \omega=2 \pi \times 500 \times 10^{6}, Z_{0}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}=27.21 \angle 0.3^{\circ}$

Eg. Consider lossless stripline design for a given characteristic impedance. (a) How should the dielectric thickness d be changed for a given plate width \boldsymbol{w} if the dielectric constant ε_{r} is doubled? (b) How should w be changed for a given d if ε_{r} is doubled? (c) How should w be changed for a given ε_{r} if d is doubled?
(Sol.) $Z_{0}=\sqrt{\frac{L}{C}}=\frac{d}{w} \sqrt{\frac{\mu}{\varepsilon}}$
(a) $\varepsilon \rightarrow 2 \varepsilon \Rightarrow d=\rightarrow \sqrt{2} d$,
(b) $\varepsilon \rightarrow 2 \varepsilon \Rightarrow w \rightarrow \frac{w}{\sqrt{2}}$
(c) $d \rightarrow 2 d \Rightarrow w \rightarrow 2 w$

Attenuation constant of transmission line: $\alpha=\frac{P_{L}(z)}{2 P(z)}$, where $P_{\mathrm{L}}(z)$ is the time-average power loss in an infinitesimal
 distance.
$\gamma=\alpha+j \beta \Rightarrow \alpha=\operatorname{Re}(\gamma)=\operatorname{Re}[\sqrt{(R+j \omega L)(G+j \omega C)}]$
Suppose no reflection, $\quad V(z)=V_{0} e^{-(\alpha+j \beta) z}, \quad I(z)=\frac{V_{0}}{Z_{0}} e^{-(\alpha+j \beta) z}$
$\Rightarrow P(z)=\frac{1}{2} \operatorname{Re}\left[V(z) I^{*}(z)\right]=\frac{V_{0}{ }^{2}}{2\left|Z_{0}\right|^{2}} \cdot R_{0} e^{-2 \alpha z} \propto e^{-2 \alpha z}$
$\Rightarrow-\frac{\partial P(z)}{\partial z}=P_{L}(z)=2 \alpha P(z) \Rightarrow \alpha=\frac{P_{L}(z)}{2 P(z)}$

Microstrip lines: are usually used in the $m m$ wave range.

$v_{p}=\frac{c}{\sqrt{\varepsilon_{f f}}}, \mathrm{Z}_{o}=\frac{1}{v_{p} C}=\sqrt{\frac{L}{C}}, \quad \lambda=\frac{v_{p}}{f}=\frac{\lambda_{\mathrm{o}}}{\sqrt{\varepsilon_{f f}}}$

Assuming the quasi-TEM mode:

Case 1: $t / h<0.005, t$ is negligible.
Given h, W, and ε_{r}, obtain Z_{0} as follows:
For $W / h \leq 1: \quad \mathrm{Z}_{o}=\frac{60}{\sqrt{\varepsilon_{f f}}} \ln \left(8 \frac{h}{W}+0.25 \frac{W}{h}\right)$,
where $\varepsilon_{f f}=\frac{\varepsilon_{r}+1}{2}+\frac{\varepsilon_{r}-1}{2}\left[\left(1+12 \frac{h}{W}\right)^{-1 / 2}+0.04\left(1-\frac{W}{h}\right)^{2}\right]$
For $W / h \geq 1: \mathrm{Z}_{o}=\frac{120 \pi / \sqrt{\varepsilon_{f f}}}{W / h+1.393+0.667 \ln (W / h+1.444)}$,
where $\varepsilon_{f f}=\frac{\varepsilon_{r}+1}{2}+\frac{\varepsilon_{r}-1}{2}\left(1+12 \frac{h}{W}\right)^{-1 / 2}$
Given Z_{0}, h, and ε_{r}, obtain W as follows:
For $W / h \leq 2: W=\frac{8 h e^{A}}{e^{2 A}-2}$, where $\mathrm{A}=\frac{\mathrm{Z}_{0}}{60} \sqrt{\frac{\varepsilon_{r}+1}{2}}+\frac{\varepsilon_{r}-1}{\varepsilon_{r}+1}\left(0.23+\frac{0.11}{\varepsilon_{r}}\right)$
For $W / h>2: \quad W=\frac{2 h}{\pi}\left\{B-1-\ln (2 B-1)+\frac{\varepsilon_{r}-1}{2 \varepsilon_{r}}\left[\ln (B-1)+0.39-\frac{0.61}{\varepsilon_{r}}\right]\right\}$, where
$\mathrm{B}=\frac{377 \pi}{2 \mathrm{Z}_{0} \sqrt{\varepsilon_{r}}}$
Case 2: $t / h>0.005$. In this case, we obtain $W_{\text {eff }}$ firstly.
For $W / h \geq 1 / 2 \pi: \frac{W_{\text {eff }}}{h}=\frac{W}{h}+\frac{t}{\pi h}\left(1+\ln \frac{2 h}{t}\right)$
For $W / h \leq 1 / 2 \pi: \frac{W_{e f f}}{h}=\frac{W}{h}+\frac{t}{\pi h}\left(1+\ln \frac{4 \pi W}{t}\right)$
And then we substitute $W_{\text {eff }}$ into W in the expressions in Case 1 .

Assuming not the quasi-TEM mode:

$\mathrm{Z}_{\mathrm{O}}(f)=\frac{377 h}{W_{\text {eff }}(f) \sqrt{\varepsilon_{f f}}}$, where $W_{\text {eff }}(f)=W+\frac{W_{e f f}(0)-W}{1+\left(f / f_{p}\right)^{2}}, \quad f_{p}=\frac{\mathrm{Z}_{\mathrm{O}}}{8 \pi h} \quad(h$ in $c m)$
and $W_{e f f}(0)=\frac{377 h}{\mathrm{Z}_{0}(0) \sqrt{\varepsilon_{f f}(0)}}, G=0.6+0.009 \mathrm{Z}_{0}, \varepsilon_{f f}(f)=\varepsilon_{r}-\frac{\varepsilon_{r}-\varepsilon_{f f}}{1+G\left(f / f_{p}\right)^{2}} \quad(f$ in $G H z)$
The frequency below which dispersion may be neglected is given by $f_{0}(G H z)=0.3 \sqrt{\frac{\mathrm{Z}_{\mathrm{O}}}{h \sqrt{\varepsilon_{r}-1}}}$, where h must be expressed in cm .

Attenuation constant: $\alpha=\alpha_{\mathrm{d}}+\alpha_{c}$
For a dielectric with low losses: $\alpha_{d}=27.3 \frac{\varepsilon_{r}}{\sqrt{\varepsilon_{f f}}} \frac{\varepsilon_{f f}-1}{\varepsilon_{r}-1} \frac{\tan \delta}{\lambda_{\mathrm{o}}} \quad\left(\frac{\mathrm{dB}}{c m}\right)$
For a dielectric with high losses: $\alpha_{d}=4.34 \frac{\varepsilon_{f f}-1}{\sqrt{\varepsilon_{f f}}\left(\varepsilon_{r}-1\right)}\left(\frac{\mu_{0}}{\varepsilon_{\mathrm{O}}}\right)^{1 / 2} \sigma \quad\left(\frac{\mathrm{~dB}}{c m}\right)$
For $W / h \rightarrow \infty: \alpha_{c}=\frac{8.68}{\mathrm{Z}_{\mathrm{O}} \mathrm{W}} R_{s}$, where $R_{s}=\sqrt{\frac{\pi f \mu_{\mathrm{O}}}{\sigma}}$
For $W / h \leq 1 / 2 \pi: \quad \alpha_{c}=\frac{8.68 R_{s} P}{2 \pi Z_{0} h}\left[1+\frac{h}{W_{\text {eff }}}+\frac{h}{\pi W_{\text {eff }}}\left(\ln \frac{4 \pi W}{t}+\frac{t}{W}\right)\right]$
For $1 / 2 \pi<W / h \leq 2: \quad \alpha_{c}=\frac{8.68 R_{s}}{2 \pi \mathrm{Z}_{\mathrm{o}} h} P Q$, where $P=1-\left(\frac{W_{e f f}}{4 h}\right)^{2}$
and $Q=1+\frac{h}{W_{\text {eff }}}+\frac{h}{\pi W_{e f f}}\left(\ln \frac{2 h}{t}-\frac{t}{h}\right)$

For $W / h \geq 2$:

$$
\alpha_{c}=\frac{8.68 R_{s} Q}{\mathrm{Z}_{\mathrm{o}} h}\left\{\frac{W_{e f f}}{h}+\frac{2}{\pi} \ln \left[2 \pi e\left(\frac{W_{e f f}}{2 h}+0.94\right)\right]\right\}^{-2}\left[\frac{W_{e f f}}{h}+\frac{W_{e f f} / \pi h}{\left(W_{e f f} / 2 h\right)+0.94}\right]
$$

Eg. A high-frequency test circuit with microstrip lines.

Figure Test circuit, photomaster, and circuit construction for the MRF890 transistor. (From Motorola RF Device Data, Vol. 1, 6th edition; copyright of Motorola, used by permission.)

Eg. The high-frequency ICs with CMOS devices.

5-2 Wave Characteristics of Finite Transmission Line

Eg. Show that the input impedance is $Z_{\mathrm{i}}=(Z)_{\substack{z=0 \\ z=\ell}}=Z_{0} \frac{Z_{L}+Z_{0} \tanh \gamma \ell}{Z_{0}+Z_{L} \tanh \gamma \ell}$.
(Proof) $\left\{\begin{array}{l}V(z)=V_{0}{ }^{+} e^{-k}+V_{0}{ }^{-} e^{\gamma z} \ldots(1) \\ I(z)=I_{0}{ }^{+} e^{-k}+I_{0}{ }^{-} e^{\gamma z} \ldots .(2)\end{array}, Z_{0}=\frac{V_{0}{ }^{+}}{I_{0}{ }^{+}}=-\frac{V_{0}{ }^{-}}{I_{0}{ }^{-}}\right.$
Let $z=l, V(l)=V_{\mathrm{L}}, I(l)=I_{\mathrm{L}}$
$\Rightarrow\left\{\begin{array}{l}V_{L}=V_{0}^{+} e^{-x}+V_{0}^{-} e^{x} \\ I_{L}=\frac{V_{0}^{+}}{Z_{0}} e^{-x}-\frac{V_{0}^{-}}{Z_{0}} e^{x}\end{array} \Rightarrow\left\{\begin{array}{l}V_{0}^{+}=\frac{1}{2}\left(V_{L}+I_{L} Z_{0}\right) e^{x} \\ V_{0}^{-}=\frac{1}{2}\left(V_{L}-I_{L} Z_{0}\right) e^{-x}\end{array}\right.\right.$
$\Rightarrow\left\{\begin{array}{l}V(z)=\frac{I_{L}}{2}\left[\left(Z_{L}+Z_{0}\right) e^{\gamma((\ell-z)}+\left(Z_{L}-Z_{0}\right) e^{-\gamma(\ell-z)}\right] \\ I(z)=\frac{I_{L}}{2 Z_{0}}\left[\left(Z_{L}+Z_{0}\right) e^{\gamma(\ell-z)}-\left(Z_{L}-Z_{0}\right) e^{-\gamma(\ell-z)}\right]\end{array}\right.$
$\Rightarrow\left\{\begin{array}{l}V\left(z^{\prime}\right)=\frac{I_{L}}{2}\left[\left(Z_{L}+Z_{0}\right) e^{\kappa^{\prime}}+\left(Z_{L}-Z_{0}\right) e^{-\gamma^{\prime}}\right] \\ I\left(z^{\prime}\right)=\frac{I_{L}}{2 Z_{0}}\left[\left(Z_{L}+Z_{0}\right) e^{\gamma^{\prime}}-\left(Z_{L}-Z_{0}\right) e^{-\gamma^{\prime}}\right]\end{array} \Rightarrow\left\{\begin{array}{l}V\left(z^{\prime}\right)=I_{L}\left(Z_{L} \cosh \gamma z^{\prime}+Z_{0} \sinh \gamma z^{\prime}\right) \\ I\left(z^{\prime}\right)=\frac{I_{L}}{Z_{0}}\left(Z_{L} \sinh \gamma z^{\prime}+Z_{0} \cosh \gamma z^{\prime}\right)\end{array}\right.\right.$
$\Rightarrow Z\left(z^{\prime}\right)=Z_{0} \frac{Z_{L}+Z_{0} \tanh \gamma z^{\prime}}{Z_{0}+Z_{L} \tanh \gamma z^{\prime}}, Z_{\mathrm{i}}=\left(Z_{\substack{z=0 \\ z=\ell}}=Z_{0} \frac{Z_{L}+Z_{0} \tanh \gamma \ell}{Z_{0}+Z_{L} \tanh \gamma \ell}\right.$
Lossless case $\left(\alpha=0, \gamma=j \beta, Z_{0}=R_{0}, \tanh (\gamma l)=j \tan \beta l\right): Z_{\mathrm{i}}=R_{0} \cdot \frac{Z_{L}+j R_{0} \tan \beta l}{R_{0}+j Z_{L} \tan \beta l}$
Note: In the high-frequency circuit, the input current $I_{\mathrm{i}}=\frac{V_{g}}{Z_{g}+Z_{i}} \neq \frac{V_{g}}{Z_{g}+Z_{L}}$: the value in the low-frequency case. And the high-frequency I_{i} is dependent on the length l, the characteristic impedance $\boldsymbol{Z}_{\mathbf{0}}$, the propagation constant $\boldsymbol{\gamma}$ of the transmission line, and the load impedance $\boldsymbol{Z}_{\mathbf{L}}$. But the low-frequency I_{i} is only dependent on $\boldsymbol{Z}_{\mathbf{0}}$ and $\mathbf{Z}_{\mathbf{L}}$.

Eg. A $2 m$ lossless air-spaced transmission line having a characteristic impedance 50Ω is terminated with an impedance $40+j 30(\Omega)$ at an operating frequency of 200 MHz . Find the input impedance.

(Sol.) $\beta=\frac{\omega}{v_{p}}=\frac{4}{3} \pi, R_{0}=50 \Omega, Z_{L}=40+j 30, \quad \ell=2 m$

$$
Z_{i}=50 \frac{(40+j 30)+j 50 \cdot \tan \left(\frac{4 \pi}{3} \cdot 2\right)}{50+j(40+j 30) \cdot \tan \left(\frac{4 \pi}{3} \cdot 2\right)}=26.3-j 9.87
$$

Eg. A transmission line of characteristic impedance 50Ω is to be matched to a load $Z_{L}=40+j 10(\Omega)$ through a length l, of another transmission line of characteristic impedance $R_{0}{ }^{\prime}$. Find the required l^{\prime} and $R_{0}{ }^{\prime}$ for matching.

(Sol.) $50=R_{0}^{\prime} \cdot \frac{40+j 10+j R_{0}^{\prime} \cdot \tan \beta \ell^{\prime}}{R_{0}^{\prime}+j(40+j 10) \cdot \tan \beta \ell^{\prime}} \Rightarrow R_{0}{ }^{\prime}=\sqrt{1500} \approx 38.7(\Omega), \quad \ell^{\prime} \approx 0.105 \lambda$
Eg. Prove that a maximum power is transferred from a voltage source with an internal impedance Z_{g} to a load impedance Z_{L} over a lossless transmission line when $Z_{i}=Z_{g^{*}}{ }^{*}$, where Z_{i} is the impedance looking into the loaded line. What is the maximum power transfer efficiency?
(Proof) $I_{i}=\frac{V}{Z_{i}+Z_{g}}, \quad V_{i}=\frac{Z_{i}}{Z_{i}+Z_{g}} V$
$(\text { Power })_{\text {out }}=\frac{1}{2} \operatorname{Re}\left[V_{i} I_{i}{ }^{*}\right]=\frac{R_{i}|V|^{2}}{2\left[\left(R_{i}+R_{g}\right)^{2}+\left(X_{i}+X_{g}\right)^{2}\right]}$
When $R_{i}=R_{g}$ and $X_{i}=-X_{g},(\text { Power })_{o u t} \rightarrow$ Max,$\therefore Z_{i}=Z_{g}$ *
In this case, $(\text { Power })_{\text {out }}=\frac{|V|^{2}}{4 R_{g}}, \quad P_{s}=\frac{1}{2} \operatorname{Re}\left[V I_{i}^{*}\right]=\frac{|V|^{2}}{2 R_{g}}, \quad e=\frac{(\text { Power })_{\text {out }}}{P_{s}}=\frac{1}{2}$

Transmission lines as circuit elements:
Consider a general case: $Z_{\mathrm{i}}=Z_{0} \frac{Z_{L}+Z_{0} \tanh \gamma \ell}{Z_{0}+Z_{L} \tanh \gamma \ell}$

1. Open-circuit termination $\left(Z_{\mathrm{L}} \rightarrow \infty\right)$: $Z_{\mathrm{i}}=Z_{\mathrm{io}}=Z_{0} \operatorname{coth}(\gamma l)$
2. Short-circuit termination $\left(Z_{\mathrm{L}}=0\right): Z_{\mathrm{i}}=Z_{\mathrm{is}}=Z_{0} \tanh (\gamma l)$

$$
\therefore Z_{0}=\sqrt{Z_{i 0} \cdot Z_{i s}}, \gamma=\frac{1}{\ell} \tanh ^{-1} \sqrt{\frac{Z_{i s}}{Z_{i 0}}}
$$

3. Quarter-wave section in a lossless case (l= $/ / 4, \beta l=\pi / 2): Z_{i}=\frac{R_{0}{ }^{2}}{Z_{L}}$
4. Half-wave section in a lossless case ($l=\lambda / 2, \beta l=\pi$): $Z_{i}=Z_{L}$

Eg. The open-circuit and short-circuit impedances measured at the input terminals of an air-spaced transmission line $4 m$ long are $\mathbf{2 5 0} \angle \mathbf{- 5 0 ^ { \circ }}(\Omega)$ and $\mathbf{3 6 0} \angle \mathbf{2 0} 0^{\circ}(\Omega)$, respectively. (a) Determine

(Sol.) (a) $Z_{0}=\sqrt{250 e^{-j 50^{\circ}} \cdot 360 e^{j 20}}=289.8-j 77.6$,
$\gamma=\frac{1}{4} \tanh ^{-1} \sqrt{\frac{360 \angle 20^{\circ}}{250 \angle-50^{\circ}}}=0.139+j 0.235=\alpha+j \beta$
(b) $R+j \omega L=Z_{0} \cdot \gamma=58.5+j 57.3, \quad L=\frac{57.3}{\omega}=\frac{57.3}{c \beta}=0.812(\mu \mathrm{H} / \mathrm{m})$
$G+j \omega C=\frac{\gamma}{Z_{0}}=24.5 \times 10^{-5}+j 8.76 \times 10^{-4}, C=\frac{8.76 \times 10^{-4}}{c \beta}=12.4(\mathrm{pF} / \mathrm{m})$

Eg. Measurements on a 0.6 m lossless coaxial cable at 100 kHz show a capacitance of $54 p F$ when the cable is open-circuited and an inductance of $0.30 \mu H$ when it is short-circuited. Determine Z_{0} and the dielectric constant of its insulating medium.
(Sol.) (a) $C=\frac{54 \times 10^{-12}}{0.6}=9 \times 10^{-11}(F / \mathrm{m}), L=\frac{0.3 \times 10^{-6}}{0.6}=5 \times 10^{-7}(\mathrm{H} / \mathrm{m})$
Lossless $\Rightarrow Z_{0}=R_{0}=\sqrt{\frac{L}{C}}=74.5 \Omega, \quad \mu \varepsilon=\mu_{0} \mu_{r} \varepsilon_{0} \varepsilon_{r}=L C \Rightarrow \varepsilon_{r}=4.05$

General expressions for $V(z)$ and $I(z)$ on the transmission lines:

> Let $\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=|\Gamma| e^{j \theta_{\Gamma}}, z^{\prime}=l-z$
> $\left\{\begin{array}{l}V\left(z^{\prime}\right)=\frac{I_{L}}{2}\left(Z_{L}+Z_{0}\right) \cdot e^{\gamma^{\prime}} \cdot\left[1+\Gamma e^{-2 \gamma^{\prime}}\right] \\ I\left(z^{\prime}\right)=\frac{I_{L}}{2 Z_{0}}\left(Z_{L}+Z_{0}\right) \cdot e^{\gamma^{\prime}} \cdot\left[1-\Gamma e^{-2 \mathfrak{K}^{\prime}}\right]\end{array}\right.$
> $\Rightarrow\left\{\begin{array}{l}V\left(z^{\prime}\right)=\frac{I_{L}}{2}\left(Z_{L}+Z_{0}\right) \cdot e^{\varkappa^{\prime}} \cdot\left[1+|\Gamma| e^{j\left(\theta_{\mathrm{r}}-2 r^{\prime}\right)}\right] \\ I\left(z^{\prime}\right)=\frac{I_{L}}{2 Z_{0}}\left(Z_{L}+Z_{0}\right) \cdot e^{\gamma^{\prime}} \cdot\left[1-|\Gamma| e^{j\left(\theta_{\mathrm{r}}-2 z^{\prime}\right)}\right]\end{array}\right.$

For a lossless line, $V(z)=\frac{Z_{0} V_{g}}{Z_{0}+Z_{g}} e^{-j \beta z}\left[1+\Gamma e^{-j 2 \beta(\ell-z)}\right]$
Eg. A 100 MHz generator with $V_{g}=10 \angle 0^{\circ}(V)$ and internal resistance 50Ω is connected to a lossless 50Ω air line that is 3.6 m long and terminated in a $25+j 25(\Omega)$ load. Find (a) $V(z)$ at a location z from the generator, (b) V_{i} at the input terminals and V_{L} at the load, (c) the voltage standing-wave radio on the line, and (d) the average power delivered to
 the load.
(Sol.) $\quad V_{g}=10 \angle 0^{\circ}(V) \quad, \quad Z_{g}=50(\Omega) \quad, \quad f=10^{8}(H z) \quad, \quad Z_{0}=50(\Omega)$,
$Z_{L}=25+j 25=35.36 \angle 45^{\circ}(\Omega)$,
$\ell=3.6(\mathrm{~m}), \quad \beta=\frac{\omega}{c}=\frac{2 \pi 10^{8}}{3 \times 10^{8}}=\frac{2 \pi}{3}(\mathrm{rad} / \mathrm{m}), \quad \beta \ell=2.4 \pi(\mathrm{rad} / \mathrm{m})$

$$
\Gamma=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{(25+j 25)-50}{(25+j 25)+50}=0.447 \angle 0.648 \pi, \quad \Gamma_{g}=0
$$

(a) $V(z)=\frac{Z_{0} V_{g}}{Z_{0}+Z_{g}} e^{-j \beta z}\left[1+\Gamma e^{-j 2 \beta(\ell-z)}\right]=5\left[e^{-j 2 \pi / 3}+0.447 e^{j(2 z / 3-0.152) \pi}\right]$
(b) $V_{i}=V(0)=5\left(1+0.447 e^{-j 0.152 \pi}\right)=7.06 \angle-8.43^{\circ}(V)$
(c) $V_{L}=V(3.6)=5\left[e^{-j 0.4 \pi}+0.447 e^{j 0.248 \pi}\right]=4.47 \angle-45.5^{\circ}(V)$
(d) $S=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+0.447}{1-0.447}=2.62, \quad P_{a v}=\frac{1}{2}\left|\frac{V_{L}}{Z_{L}}\right|^{2} R_{L}=\frac{1}{2}\left(\frac{4.47}{35.36}\right)^{2} \times 25=0.200(\mathrm{~W})$

Case 1 For a pure resistive load: $Z_{\mathrm{L}}=R_{\mathrm{L}}$
$\Rightarrow\left\{\begin{array}{l}V\left(z^{\prime}\right)=V_{L} \cdot \cos \beta z^{\prime}+j I_{L} R_{0} \cdot \sin \beta z^{\prime} \\ I\left(z^{\prime}\right)=I_{L} \cdot \cos \beta z^{\prime}+j \frac{V_{L}}{R_{0}} \cdot \sin \beta z^{\prime}\end{array} \Rightarrow\left\{\begin{array}{l}\left|V\left(z^{\prime}\right)\right|=V_{L} \cdot \sqrt{\cos ^{2} \beta z^{\prime}+\left(R_{0} / R_{L}\right)^{2} \sin ^{2} \beta z^{\prime}} \\ \left|I\left(z^{\prime}\right)\right|=I_{L} \cdot \sqrt{\cos ^{2} \beta z^{\prime}+\left(R_{L} / R_{0}\right)^{2} \sin ^{2} \beta z^{\prime}}\end{array}\right.\right.$
$S=\frac{1+|\Gamma|}{1-|\Gamma|},|\Gamma|=\frac{S-1}{S+1} \Rightarrow 1 . \Gamma=0 \Leftrightarrow S=1$ when $Z_{\mathrm{L}}=Z_{0}$ (matched load)
2. $\Gamma=-1 \Leftrightarrow S=\infty$ when $Z_{\mathrm{L}}=0$ (short-circuit), $3 . \Gamma=1 \Leftrightarrow S=-\infty$ when $Z_{\mathrm{L}}=\infty$ (open-circuit)
$\left|V_{\text {max }}\right| \&\left|I_{\text {min }}\right|$ occurs at $\theta_{\Gamma}-2 \beta z_{\text {max }}^{\prime}=-2 n \pi$
$\left|V_{\min }\right| \&\left|I_{\max }\right|$ occurs at $\theta_{\Gamma}-2 \beta z_{\text {min }}^{\prime}=-(2 n+1) \pi$ If

$R_{L}>R_{0} \Rightarrow \Gamma>0 \Rightarrow \theta_{\Gamma}=0, z^{\prime}{ }_{\max }=\frac{n \lambda}{2}, n=0,1,2,3 \ldots$
If $R_{L}<R_{0} \Rightarrow \Gamma<0 \Rightarrow \theta_{\Gamma}=-\pi, z_{\text {min }}^{\prime}=\frac{n \lambda}{2}$
If $R_{L}=\infty \Rightarrow z_{\text {max }}^{\prime}=\frac{n \lambda}{2}$

Eg. The standing-wave radio S on a transmission line is an easily measurable quality. Show how the value of a terminating resistance on a lossless line of known characteristic impedance R_{0} can be determined by measuring S.
(Sol.) If $R_{L}>R_{0}, \quad \theta_{\Gamma}=0,\left|V_{\max }\right|$ occurs at $\beta z^{\prime}=0$ and $\left|V_{\min }\right|$ occurs at $\beta z^{\prime}=\pi / 2$.
$\left|V_{\text {max }}\right|=V_{L},\left|V_{\text {min }}\right|=V_{L} \frac{R_{0}}{R_{L}},\left|I_{\text {min }}\right|=I_{L},\left|I_{\text {max }}\right|=I_{L} \frac{R_{L}}{R_{0}}, \frac{\left|V_{\text {max }}\right|}{\left|V_{\text {min }}\right|}=\frac{\left|I_{\text {max }}\right|}{\left|I_{\text {min }}\right|}=S=\frac{R_{L}}{R_{0}} \quad$ or $R_{L}=S R_{0}$.

If $R_{L}<R_{0}, \theta_{\Gamma}=-\pi,\left|V_{\min }\right|$ occurs at $\beta z^{\prime}=0$, and $\left|V_{\max }\right|$ occurs at $\beta z^{\prime}=\pi / 2$.
$\left|V_{\text {min }}\right|=V_{L},\left|V_{\text {max }}\right|=V_{L} \frac{R_{0}}{R_{L}}, \quad\left|I_{\text {max }}\right|=I_{L}, \quad\left|I_{\text {min }}\right|=I_{L} \frac{R_{L}}{R_{0}} \cdot \frac{\left|V_{\text {max }}\right|}{\left|V_{\text {min }}\right|}=\frac{\left|I_{\text {max }}\right|}{\left|I_{\text {min }}\right|}=S=\frac{R_{0}}{R_{L}} \quad$ or
$R_{L}=\frac{R_{0}}{S}$

Case 2 For a lossless transmission line, and arbitrary load:

$$
Z_{\mathrm{L}}=R_{0} \cdot \frac{R_{m}+j R_{0} \tan \beta \ell_{m}}{R_{0}+j R_{m} \tan \beta \ell_{m}}, z_{\mathrm{m}}^{\prime}+l_{\mathrm{m}}=\lambda / 2
$$

Find $Z_{\mathrm{L}}=$?

1. $|\Gamma|=\frac{S-1}{S+1}, 2$. At $\theta_{\Gamma}=2 \beta z_{\mathrm{m}}{ }^{\prime}-\pi, V\left(z^{\prime}\right)$ is a minimum.
2. $Z_{\mathrm{L}}=R_{\mathrm{L}}+j X_{\mathrm{L}}=R_{0} \cdot \frac{1+|\Gamma| e^{j \theta_{\Gamma}}}{1-|\Gamma| e^{j \theta_{\Gamma}}}=R_{0} \cdot \frac{1+\Gamma}{1-\Gamma}$

Eg. Consider a lossless transmission line. (a) Determine the line's characteristic resistance so that it will have a minimum possible standing-wave ratio for a load impedance $40+j 30(\Omega)$. (b) Find this minimum standing-wave radio and the corresponding voltage reflection coefficient. (c) Find the location of the voltage minimum nearest to the load.
(Sol.)

$$
\begin{aligned}
& |\Gamma|=\left|\frac{Z_{L}-R_{0}}{Z_{L}+R_{0}}\right|=\left|\frac{40-R_{0}+j 30}{40+R_{0}+j 30}\right|=\left[\frac{\left(40-R_{0}\right)^{2}+30^{2}}{\left(40+R_{0}\right)^{2}+30^{2}}\right]^{1 / 2}, S=\frac{1+|\Gamma|}{1-|\Gamma|}, \frac{d S}{d R_{0}}=0 \Rightarrow R_{0}=50 \Omega \Rightarrow|\Gamma|=\frac{1}{3} \\
& \Rightarrow S=2, \quad \Gamma=\frac{Z_{L}-R_{0}}{Z_{L}+R_{0}}=\frac{-10+j 30}{90+j 30}=\frac{1}{3} \angle-90^{\circ}=\frac{1}{3} \angle-\frac{\pi}{2}, \quad \theta_{\Gamma}=-\frac{\pi}{2} \\
& z_{\min }^{\prime}=\frac{1}{2 \beta}\left(\pi-\frac{\pi}{2}\right)=\frac{\lambda}{8}, \quad \ell_{m}=\frac{\lambda}{2}-\frac{\lambda}{8}=\frac{3 \lambda}{8}
\end{aligned}
$$

Eg. $S W R$ on a lossless 50Ω terminated line terminated in an unknown load impedance is 3 . The distance between successive minimum is 20 cm . And the first minimum is located at 5 cm from the load. Determine $\Gamma, Z_{\mathrm{L}}, l_{\mathrm{m}}$, and R_{m}.
(Sol.) $\frac{\lambda}{2}=0.2 \Rightarrow \lambda=0.4 m, \beta=\frac{2 \pi}{\lambda}=5 \pi$
$|\Gamma|=\frac{3-1}{3+1}=0.5, z_{m}^{\prime}=0.05 \Rightarrow \ell_{m}=\frac{\lambda}{2}-z_{m}{ }^{\prime}=0.15 m$
$\theta_{\Gamma}=2 \beta z_{m}{ }^{\prime}-\pi=-0.5 \pi, \quad \Gamma=|\Gamma| e^{j \theta_{\Gamma}}=0.5 e^{-j 0.5 \pi}=-\frac{j}{2}$
$R_{0}=50, Z_{L}=50 \cdot \frac{1+\left(\frac{-j}{2}\right)}{1-\left(-\frac{j}{2}\right)}=30-j 40=50 \cdot \frac{R_{m}+j 50 \tan \beta \ell_{m}}{50+j R_{m} \tan \beta \ell_{m}}$
$\Rightarrow R_{m}=\frac{50}{3}=16.7(\Omega)$

5-3 Introduction to Smith Chart

$\Gamma=\frac{Z_{L}-R_{0}}{Z_{L}+R_{0}}=|\Gamma| e^{j \theta_{\Gamma}}=\frac{Z_{L} / R_{0}-1}{Z_{L} / R_{0}+1}=\frac{z_{L}-1}{z_{L}+1}=\Gamma_{r}+j \Gamma_{i} \Rightarrow z_{L}=\frac{1+\Gamma}{1-\Gamma}=\frac{1+|\Gamma| e^{j \theta_{\Gamma}}}{1-|\Gamma| e^{j \theta_{\Gamma}}}=r+j x$
$\Rightarrow r=\frac{1-\Gamma_{r}^{2}-\Gamma_{i}^{2}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}} \quad, \quad x=\frac{2 \Gamma_{i}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}}$
$\Rightarrow\left(\Gamma_{r}-\frac{r}{1+r}\right)^{2}+\Gamma_{i}^{2}=\left(\frac{1}{1+r}\right)^{2}: r$-circle, $\left(\Gamma_{r}-1\right)^{2}+\left(\Gamma_{i}-\frac{1}{x}\right)^{2}=\left(\frac{1}{x}\right)^{2}: x$-circle

Several salient properties of the r-circles:

1. The centers of all r-circles lie on the Γ_{r}-axis.
2. The $r=0$ circle, having a unity radius and centered at the origin, is the largest.
3. The r-circles become progressively smaller as r increases from 0 toward ∞, ending at the $\left(\Gamma_{\mathrm{r}}=1, \Gamma_{\mathrm{i}}=0\right)$ point for open-circuit.
4. All r-circles pass through the $\left(\Gamma_{\mathrm{r}}=1, \Gamma_{\mathrm{i}}=0\right)$ point.

Salient properties of the x-circles:

1. The centers of all x-circles lie on the $\Gamma_{\mathrm{r}}=1$ line, those for $x>0$ (inductive reactance) lie above the Γ_{r}-axis, and those for $x<0$ (capacitive reactance) lie below the Γ_{r}-axis.
2. The $x=0$ circle becomes the Γ_{r}-axis.
3. The x-circle becomes progressively smaller as $|x|$ increases from 0 toward ∞, ending at the $\left(\Gamma_{\mathrm{r}}=1, \Gamma_{\mathrm{i}}=0\right)$ point for open-circuit.
4. All x-circles pass through the $\left(\Gamma_{\mathrm{r}}=1, \Gamma_{\mathrm{i}}=0\right)$ point.

Summary

1. All $|\Gamma|$-circles are centered at the origin, and their radii vary uniformly from 0 to 1.
2. The angle, measured from the positive real axis, of the line drawn from the origin through the point representing z_{L} equals θ_{Γ}.
3. The value of the r-circle passing through the intersection of the $|\Gamma|$-circle and the positive-real axis equals the standing-wave radio S.

Application of Smith Chart in lossless transmission line:

$$
\begin{gathered}
Z_{i}\left(z^{\prime}\right)=\frac{V\left(z^{\prime}\right)}{I\left(z^{\prime}\right)}=z_{0}\left[\frac{1+\Gamma e^{-j 2 \beta z^{\prime}}}{1-\Gamma e^{-j 2 \beta z^{\prime}}}, \quad z_{i}\left(z^{\prime}\right)=\frac{Z_{i}(z)}{Z_{0}}=\frac{1+\Gamma e^{-j 2 \beta z^{\prime}}}{1-\Gamma e^{-j 2 \beta z^{\prime}}}=\frac{1+|\Gamma| e^{j \phi}}{1-|\Gamma| e^{j \phi}}\right. \text { when } \\
\phi=\theta_{\Gamma}-2 \beta z^{\prime}
\end{gathered}
$$

keep $|\Gamma|$ constant and subtract (rotate in the clockwise direction) an angle $=2 \beta z^{\prime}=\frac{4 \pi z^{\prime}}{\lambda}$ from θ_{Γ}. This will locate the point for $|\Gamma| e^{j \varphi}$, which determine Z_{i}.

Increasing $z^{\prime} \Leftrightarrow$ wavelength toward generator in the clockwise direction
A change of half a wavelength in the line length $\Delta z^{\prime}=\frac{\lambda}{2} \Leftrightarrow$ A change of $2 \beta\left(\Delta z^{\prime}\right)=2 \pi$ in φ.

Eg. Use the Smith chart to find the input impedance of a section
of a 50Ω lossless transmission line that is 0.1 wavelength long and is terminated in a short-circuit.

(Sol.) Given $z_{L}=0, R_{0}=50(\Omega), \quad z^{\prime}=0.1 \lambda$

1. Enter the Smith chart at the intersection of $r=0$ and $x=0$ (point $P_{s c}$ on the extreme left of chart; see Fig.)
2. Move along the perimeter of the chart $(\mid \Gamma=1) \mid$ by 0.1 "wavelengths toward generator" in a clockwise direction to P_{1}. At P_{1}, read $r=0$ and $x \cong 0.725$, or $z_{i}=j 0.725, \quad Z_{i}=50(j 0.725)=j 36.3(\Omega)$.

Eg. A lossless transmission line of length 0.434λ and characteristic impedance 100Ω is terminated in an impedance $260+j 180(\Omega)$. Find (a) the voltage reflection coefficient, (b) the standing-wave radio, (c) the input
 impedance, and (d) the location of a voltage maximum on the line.
(Sol.) (a) Given $l=0.434 \lambda, R_{0}=100 \Omega, Z_{\mathrm{L}}=260+j 180$

1. Enter the Smith chart at $z_{\mathrm{L}}=Z_{\mathrm{L}} / R_{0}=2.6+j 1.8$ (point P_{2} in Fig.)
2. With the center at the origin, draw a circle of radius $\overline{O P}_{2}=|\Gamma|=0.60 .\left(\overline{O P}_{s c}=1\right)$
3. Draw the straight line $O P_{2}$ and extend it to P_{2} ' on the periphery. Read 0.22 on "wavelengths toward generator" scale. $\theta_{\Gamma}=21^{\circ}, \Gamma=|\Gamma| e^{j \theta_{\Gamma}}=0.60 \angle 21^{\circ}$.
(b) The $|\Gamma|=0.60$ circle intersects with the positive-real axis $O P_{o c}$ at $r=S=4$.
(c) To find the input impedance:
4. Move P_{2} ' at 0.220 by a total of 0.434 "wavelengths toward generator," first to 0.500 and then further to 0.154 to $P_{3}{ }^{\prime}$.
5. Join O and P_{3} ' by a straight line which intersects the $|\Gamma|=0.60$ circle at P_{3}.
6. Read $r=0.69$ and $x=1.2$ at $P_{3} . \quad Z_{i}=R_{0} z_{i}=100(0.69+j 1.2)=69+j 120(\Omega)$.
(d) In going from P_{2} to P_{3}, the $|\Gamma|=0.60$ circle intersects the positive-real axis $O P_{o c}$ at P_{M}, where the voltage is a maximum. Thus a voltage maximum appears at (0.250-0.220) λ or 0.030λ from the load.

Application of Smith Chart in lossy transmission line

$$
z_{i}=\frac{1+\Gamma e^{-2 \alpha z^{\prime}} \cdot e^{-2 j \beta z^{\prime}}}{1-\Gamma e^{-2 \alpha z^{\prime}} \cdot e^{-2 j \beta z^{\prime}}}=\frac{1+|\Gamma| e^{-2 \alpha z^{\prime}} \cdot e^{j \phi}}{1-|\Gamma| e^{-2 \alpha z^{\prime}} \cdot e^{j \phi}}
$$

\therefore We can not simply move close the $|\Gamma|$-circle; auxiliary calculation is necessary for the $e^{-2 \alpha z^{\prime}}$ factor.

Eg. The input impedance of a short-circuited lossy transmission line of length $2 m$ and characteristic impedance 75Ω (approximately real) is $45+j 225(\Omega)$. (a) Find α and β of the line. (b) Determine the input impedance if the short-circuit is replaced by a load impedance $Z_{L}=67.5-j 45(\Omega)$.
(Sol.) (a) Enter $z_{i 1}=(45+j 225) / 75=0.60+j 3.0$ in the chart as P_{1} in Fig.
Draw a straight line from the origin O through P_{1} to P_{1}.
Measure $\overline{O P}_{1} / \overline{O P_{1}{ }^{\prime}}=0.89=e^{-2 \alpha \ell}, \quad \alpha=\frac{1}{2 \ell} \ln \left(\frac{1}{0.89}\right)=\frac{1}{4} \ln (1.124)=0.029(\mathrm{~Np} / \mathrm{m})$
Record that the arc $P_{s c} P_{1}^{\prime}$ is 0.20 "wavelengths toward generator". $\ell / \lambda=0.20$, $2 \beta \ell=4 \pi / / \lambda=0.8 \pi . \quad \beta=\frac{0.8 \pi}{2 \ell}=\frac{0.8 \pi}{4}=0.2 \pi(\mathrm{rad} / \mathrm{m})$.
(b) To find the input impedance for:

1. Enter $z_{L}=Z_{L} / Z_{0}=(67.5-j 45) / 75=0.9-j 0.6$ on the Smith chart as P_{2}.
2. Draw a straight line from O through P_{2} to P_{2} ' where the "wavelengths toward generator" reading is 0.364.
3. Draw a $|\Gamma|$-circle centered at O with radius $\overline{O P_{2}}$.
4. Move P_{2} ' along the perimeter by 0.2 "wavelengths toward generator" to P_{3} ' at $0.364+0.20=0.564$ or 0.064 .
5. Joint P_{3} ' and O by a straight line, intersecting the $|\Gamma|$-circle at P_{3}.
6. Mark on line $O P_{3}$ a point P_{i} such that $\overline{O P_{i}} / \overline{O P_{3}}=e^{-2 \alpha \ell}=0.89$.
7. At P_{i}, read $z_{i}=0.64+j 0.27 . Z_{i}=75(0.64+j 0.27)=48.0+j 20.3(\Omega)$

5-4 Transmission-line Impedance Matching

Impedance matching by $\lambda / 4$-transformer: $R_{0}{ }^{\prime}=\sqrt{R_{0} R_{L}}$

Acoustle Transtormers, Exponential Horns:
We use $\mathrm{N}=\operatorname{AL}$, seobsons, where L is the length of the transforme
Acoustic Examples:
French horn trumbet, isuchpeskers

Eg. A signal generator is to feed equal power through a lossless air transmission line of characteristic impedance 50Ω to two separate resistive loads, 64Ω and 25Ω. Quarter-wave transformers are used to match the loads to the 50Ω
 line. (a) Determine the required characteristic impedances of the quarter-wave lines. (b) Find the standing-wave radios on the matching line sections.
(Sol.) (a) $R_{i 1}=R_{i 2}=2 R_{0}=100(\Omega)$.
$R_{01}^{\prime}=\sqrt{R_{i 1} R_{L 1}}=\sqrt{100 \times 64}=80(\Omega), R_{02}^{\prime}=\sqrt{R_{i 2} R_{L 2}}=\sqrt{100 \times 25}=50(\Omega)$
(b) Matching section No. 1:

$$
\Gamma_{1}=\frac{R_{L 1}-R_{01}^{\prime}}{R_{L 1}+R_{01}^{\prime}}=\frac{64-80}{64+80}=-0.11, S_{1}=\frac{1+\left|\Gamma_{1}\right|}{1-\left|\Gamma_{1}\right|}=\frac{1+0.11}{1-0.11}=1.25
$$

Matching section No. 2:

$$
\Gamma_{2}=\frac{R_{L 2}-R_{02}^{\prime}}{R_{L 2}+R_{02}^{\prime}}=\frac{25-50}{25+50}=-0.33, \quad S_{2}=\frac{1+\left|\Gamma_{2}\right|}{1-\left|\Gamma_{2}\right|}=\frac{1+0.33}{1-0.33}=1.99
$$

Application of Smith Chart in obtaining admittance:

$Y_{L}=1 / Z_{L}, \quad z_{L}=\frac{Z_{L}}{R_{0}}=\frac{1}{R_{0} Y_{L}}=\frac{1}{y_{L}}$, where $y_{L}=Y_{L} / Y_{0}=Y_{0} / G_{0}=R_{0} Y_{L}=y+j b$

Eg. Find the input admittance of an open-circuited line of characteristic impedance 300Ω and length 0.04λ.
(Sol.) 1. For an open-circuited line we start from the point P_{oc} on the extreme right of the impedance Smith chart, at 0.25 in Fig.
2. Move along the perimeter of the chart by 0.04 "wavelengths toward generator" to P_{3} (at 0.29).
3. Draw a straight line from P_{3} through O, intersecting at P_{3} ' on the opposite side.
4. Read at $P_{3}{ }^{\prime}: \quad y_{i}=0+j 0.26, Y_{i}=\frac{1}{300}(0+j 0.26)=j 0.87 \mathrm{mS}$.

Application of Smith Chart in single-stub matching:

$Y_{i}=Y_{B}+Y_{S}=Y_{0}=\frac{1}{R_{0}} \Rightarrow 1=y_{B}+y_{S}$, where $y_{\mathrm{B}}=R_{0} Y_{\mathrm{B}}, y_{\mathrm{s}}=R_{0} Y_{\mathrm{S}}$
$\because 1+j b_{\mathrm{s}}=y_{\mathrm{B}}, \therefore y_{\mathrm{s}}=-j b_{\mathrm{s}}$ and l_{B} is required to cancel the imaginary
 part.

Using the Smith chart as an admittance chart, we proceed as y_{L} follows for single-stub matching:

1. Enter the point representing the normalized load admittance.
2. Draw the $|\Gamma|$-circle for y_{L}, which will intersect the $g=1$ circle at two points. At these points, $y_{\mathrm{B} 1}=1+j b_{\mathrm{B} 1}$ and $y_{\mathrm{B} 2}=1+j b_{\mathrm{B} 2}$. Both are possible solutions.
3. Determine load-section lengths d_{1} and d_{2} from the angles between the point representing y_{L} and the points representing $y_{\mathrm{B} 1}$ and $y_{\mathrm{B} 2}$.

Determine stub length $l_{\mathrm{B} 1}$ and $l_{\mathrm{B} 2}$ from the angles between the short-circuit point on the extreme right of the chart to the points representing $-j b_{\mathrm{B} 1}$ and $-j b_{\mathrm{B} 2}$, respectively.

Eg. Single-Stub Matching:

Figure (a) A matching network using microstrip lines; (b) an alternative drawing; (c) schematic using two-wire transmission lines.

Eg. A 50Ω transmission line is connected to a load impedance $Z_{L}=35-j 47.5(\Omega)$. Find the position and length of a short-circuited stub required to match the line.
(Sol.) Given $\quad R_{0}=50(\Omega) \quad, \quad Z_{L}=35-j 47.5(\Omega)$
$z_{L}=Z_{L} / R_{0}=0.70-j 0.95$

1. Enter z_{L} on the Smith chart as P_{1}. Draw a $|\Gamma|$-circle centered at O with radius $\overline{O P_{1}}$.
2. Draw a straight line from P_{1} through O to P_{2}^{\prime} on the perimeter, intersecting the $|\Gamma|$-circle at P_{2}, which represents y_{L}. Note 0.109 at P_{2}^{\prime} on the "wavelengths toward generator" scale.
3. Two points of intersection of the $|\Gamma|$-circle with the $g=1$ circle.

$$
\text { At } P_{3}: y_{B 1}=1+j 1.2=1+j b_{B 1} . \text { At } P_{4}: y_{B 2}=1-j 1.2=1+j b_{B 2}
$$

4. Solutions for the position of the stubs:

For $P_{3}\left(\right.$ from P_{2}^{\prime} to $\left.P_{3}^{\prime}\right): d_{1}=(0.168-0.109) \lambda=0.059 \lambda$
For P_{4} (from P_{2}^{\prime} to $\left.P_{4}^{\prime}\right): d_{2}=(0.332-0.109) \lambda=0.223 \lambda$
For P_{3} (from $P_{s c}$ to $P^{\prime \prime}{ }_{3}$, which represents $-j b_{B 1}=-j 1.2$):
$\ell_{B 1}=(0.361-0.250) \lambda=0.111 \lambda$
For P_{4} (from $P_{s c}$ to $P_{4}^{\prime \prime}$, which represents $-j b_{B 2}=j 1.2$):
$\ell_{B 2}=(0.139+0.250) \lambda=0.389 \lambda$

5-5 Introduction to S-parameters

S-parameters: $[S]=\left[\begin{array}{l}S_{11} S_{12} \\ S_{21} S_{22}\end{array}\right]$ for analyzing the two-port high-frequency circuits.

Figure Incident and reflected waves in a two-port network.

Define $a(x)=\frac{1}{2 \sqrt{Z_{0}}}\left[V(x)+Z_{0} I(x)\right], \quad b(x)=\frac{1}{2 \sqrt{Z_{0}}}\left[V(x)-Z_{0} I(x)\right]$
$b_{1}\left(l_{1}\right)=S_{11} a_{1}\left(l_{1}\right)+S_{12} a_{2}\left(l_{2}\right), \quad b_{2}\left(l_{2}\right)=S_{21} a_{1}\left(l_{1}\right)+S_{22} a_{2}\left(l_{2}\right)$
$\Rightarrow\left[\begin{array}{l}b_{1}\left(l_{1}\right) \\ b_{2}\left(l_{2}\right)\end{array}\right]=\left[\begin{array}{l}S_{11} S_{12} \\ S_{21} S_{22}\end{array}\right] \cdot\left[\begin{array}{l}a_{1}\left(l_{1}\right) \\ a_{2}\left(l_{2}\right)\end{array}\right]$,
where $S_{11}=\left.\frac{b_{1}\left(l_{1}\right)}{a_{1}\left(l_{1}\right)}\right|_{a_{2}\left(l_{2}\right)=0}, \quad S_{21}=\left.\frac{b_{2}\left(l_{2}\right)}{a_{1}\left(l_{1}\right)}\right|_{a_{2}\left(l_{2}\right)=0}, \quad S_{22}=\left.\frac{b_{2}\left(l_{2}\right)}{a_{2}\left(l_{2}\right)}\right|_{a_{1}\left(l_{1}\right)=0}$, and $S_{12}=\left.\frac{b_{1}\left(l_{1}\right)}{a_{2}\left(l_{2}\right)}\right|_{a_{1}\left(l_{1}\right)=0}$.

Eg. The variation of S_{11} parameter of a tab monopole antenna versus operating frequency.

Eg. The variation of S_{11} parameter of a wideband low-profile SIW cavity-backed bilateral slots antenna for \mathbf{X}-band versus operating frequency.

Reflection coefficient (S_{11}) variations by slot width (a) $\mathrm{W}_{\mathrm{s} 1}$ (b) $\mathrm{W}_{\mathrm{s} 2}$.

Eg．Compact balanced bandpass filter using miniaturized substrate integrated waveguide cavities．

半模態之平衡式縮小濾波器實作圖

（a）

（b）

（a）

（b）

（c）

（d）
半模態平衡式缩小滤波器之響㦄圆（a）差模模㘧（b）共模模㹉

New S-parameters obtained by shifting reference planes:

Figure Model for shifting reference planes.

$$
\begin{gathered}
b_{1}\left(l_{1}\right)=b_{1}(0) e^{j \theta_{1}}, a_{1}\left(l_{1}\right)=a_{1}(0) e^{-j \theta_{1}}, \quad b_{2}\left(l_{2}\right)=b_{2}(0) e^{j \theta_{2}}, \quad a_{2}\left(l_{2}\right)=a_{2}(0) e^{-j \theta_{2}} \\
\Rightarrow\left[\begin{array}{l}
b_{1}(0) \\
b_{2}(0)
\end{array}\right]=\left[\begin{array}{ll}
S_{11} e^{-j 2 \theta_{1}} & S_{12} e^{-j\left(\theta_{1}+\theta_{2}\right)} \\
S_{21} e^{-j\left(\theta_{1}+\theta_{2}\right)} & S_{22} e^{-j 2 \theta_{2}}
\end{array}\right] \cdot\left[\begin{array}{c}
a_{1}(0) \\
a_{2}(0)
\end{array}\right], \text { where }
\end{gathered}
$$

$$
\left[\begin{array}{l}
S_{11}^{\prime} S_{12}^{\prime} \\
S_{21}^{\prime} S_{22}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} e^{-j 2 \theta_{1}} & S_{12} e^{-j\left(\theta_{1}+\theta_{2}\right)} \\
S_{21} e^{-j\left(\theta_{1}+\theta_{2}\right)} & S_{22} e^{-j 2 \theta_{2}}
\end{array}\right] \text { and }\left[\begin{array}{l}
S_{11} S_{12} \\
S_{21} S_{22}
\end{array}\right]=\left[\begin{array}{l}
S_{11}^{\prime} e^{j 2 \theta_{1}} \\
S_{12}^{\prime} e^{j\left(\theta_{1}+\theta_{2}\right)} \\
S_{21}^{\prime} e^{j\left(\theta_{1}+\theta_{2}\right)} S_{22}^{\prime} e^{j 2 \theta_{2}}
\end{array}\right]
$$

T-parameters: $\left[\begin{array}{l}a_{1}\left(l_{1}\right) \\ b_{1}\left(l_{1}\right)\end{array}\right]=\left[\begin{array}{l}T_{11} T_{12} \\ T_{21} T_{22}\end{array}\right] \cdot\left[\begin{array}{l}b_{2}\left(l_{2}\right) \\ a_{2}\left(l_{2}\right)\end{array}\right]$, where $\left[\begin{array}{l}T_{11} T_{12} \\ T_{21} T_{22}\end{array}\right]=\left[\begin{array}{ll}\frac{1}{S_{21}} & -\frac{S_{22}}{S_{21}} \\ \frac{S_{11}}{S_{21}} & S_{12}-\frac{S_{11} S_{22}}{S_{21}}\end{array}\right]$
and $\left[\begin{array}{l}S_{11} S_{12} \\ S_{21} S_{22}\end{array}\right]=\left[\begin{array}{cc}\frac{T_{21}}{T_{11}} & T_{22}-\frac{T_{21} T_{12}}{T_{11}} \\ \frac{1}{T_{11}} & -\frac{T_{12}}{T_{11}}\end{array}\right]$

For analyzing three-port, four-port, ..., n-port high-frequency circuits, the S-parameters are expressed in the following ways:

$$
\left[\begin{array}{l}
b_{1}\left(l_{1}\right) \\
b_{2}\left(l_{2}\right) \\
b_{3}\left(l_{3}\right)
\end{array}\right]=\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1}\left(l_{1}\right) \\
a_{2}\left(l_{2}\right) \\
a_{3}\left(l_{3}\right)
\end{array}\right],\left[\begin{array}{l}
b_{1}\left(l_{1}\right) \\
b_{2}\left(l_{2}\right) \\
b_{3}\left(l_{3}\right) \\
b_{4}\left(l_{4}\right)
\end{array}\right]=\left[\begin{array}{llll}
S_{11} & S_{12} & S_{13} & S_{14} \\
S_{21} & S_{22} & S_{23} & S_{24} \\
S_{31} & S_{32} & S_{33} & S_{34} \\
S_{41} & S_{42} & S_{43} & S_{44}
\end{array}\right] \cdot\left[\begin{array}{l}
a_{1}\left(l_{1}\right) \\
a_{1}\left(l_{2}\right) \\
a_{3}\left(l_{3}\right) \\
a_{4}\left(l_{4}\right)
\end{array}\right], \ldots
$$

Eg. The variation of S-parameters of a compact UWB 1:2:1 unequal-split 3-way Bagley power divider using non-uniform transmission lines.

(a)

(b)

(c)

Configuration of the proposed compact (a) NTL layout (b) TTL UWB 1:2:1 unequal split 3-way BPD layout and (c) fabricated prototypes.

(c)

S-Parameters (a) S_{11}, (b) $\mathrm{S}_{12}=\mathrm{S}_{14}$ and (c) S_{13} of NTL and TTL UWB 1:2:1unequal split 3-way

