Chapter 7 Statistical Mechanics

7-1 Maxwell-Boltzmann Distribution Function fMB(E)=Ag(E)e-E/kT
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For many identical particles which can be distinguished in some ways, and a number of particles in the same energy interval to occupy the same small energy in space, the average number of particles fMB(E) in a state of energy E is fMB(E)=Ag(E)e-E/kT, where g(E) is the number of states of energy of E, T is the absolute temperature, and k=1.381×10-23J/°K=8.617×10-5eV/°K is Boltzmann’s constant.
Maxwell-Boltzmann distribution is suitable to analyze the behavior of an ideal gas.
Eg. Obtain the relative populations of the rotational states of a rigid diatomic molecule.
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, MJ =-J, -J+1, -J+2, …, 0, …, J-1, J
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g(E)=2J+1, ∴ n(E)=A(2J+1)e- J(J+1)
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Eg. At what temperature would one in thousand of atoms in a gas of atomic hydrogen be in the first excited energy level?
(Sol.) Ground state 1s: ms=±
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g(E1)=2
The first excited state 2s: l=0, ml=0; 2p: l=1, ml=-1, 0, 1; ms=±
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g(E2)=8
n(E2)/n(E1)=1/1000=
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E2-E1=-13.6(1/22-1/12)=10.2eV
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T=1.4271×104°K
Energy distribution of an ideal gas: n(E)dE=
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(Proof) Consider a phase space (x,y,z,px,py,pz). The number of states g(p)dp with momenta whose magnitudes are between p and p+dp is g(p)dp
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4πp2dp.

Set g(p)dp=Bp2dp, and p2=2mE
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g(E)dE=2m3/2B√EdE
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n(E)dE=Ag(E)e-E/kTdE=2m3/2AB√Ee-E/kTdE=C√Ee-E/kTdE
∵ Total number of molecules N=
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n(E)dE=
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Total energy of N gas molecules: E=
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Average molecular energy: 
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RMS (root-mean-square) velocity: vrms=
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(Proof) 
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vrms=
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Average velocity: 
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(Proof) E=mv2/2, dE=mvdv, n(v)dv=
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The most probable velocity: vp=
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(Proof) dn(v)=0
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And we have vrms>
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7-2 Bose-Einstein Distribution Function fBE(E)=
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For identical and indistinguishable particles (bosons) that do not obey Pauli’s exclusion principle, the probability that a boson occupies a state of energy E is fBE(E)=
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Bose-Einstein distribution is suitable to analyze the effects such as photons in a cavity, phonons in a solid, liquid He at the low temperatures, etc.
(1) Consider a system of distinguishable particles 1 and 2, one of which is in state a and the other in state b.

If a≠b, ΨI=Ψa(1)Ψb(2)≠Ψa(2)Ψb(1)=ΨII; else if a=b, ΨI=Ψa(1)Ψb(2)=Ψa(2)Ψb(1)=ΨII
(2) Consider a system of bosons 1 and 2, one of which is in state a and the other in state b. Its wavefunction is ΨB=[Ψa(1)Ψb(2)+Ψa(2)Ψb(1)]/√2: symmetric
If a=b, |ΨB |2=2|Ψa(1)Ψa(2)|2>|Ψa(1)Ψa(2)|2=|ΨI |2 or |ΨII |2 if a=b
∴ The probability that two bosons are in the same state is twice what it is for distinguishable particles.

(3) Consider a system of fermions 1 and 2, one of which is in state a and the other in state b. Its wavefunction is ΨF=[Ψa(1)Ψb(2)-Ψa(2)Ψb(1)]/√2: antisymmetric.
If a=b, |ΨF |2=0. It obeys Pauli’s exclusion principle.

7-3 Fermi-Dirac Distribution Function fFD(E)=
[image: image50.wmf]1

1

+

-

kT

E

E

F

e


[image: image97.jpg]e

AT

KT



For identical and indistinguishable particles (fermions) that obey Pauli’s exclusion principle, the probability that a fermion occupies a state of energy E is fFD(E)=
[image: image51.wmf]1

1

+

-

kT

E

E

F

e

.
Fermi-Dirac distribution is suitable to analyze the effects of free electrons in metal, electrons in a star whose atoms have collapsed (white dwarf stars), etc.
Fermi energy (level), EF: fFD(EF)=0.5
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7-4 Blackbody Radiation
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Blackbody: The most efficient absorber of radiation, also the most efficient radiator. In fact, no true blackbody exists. But a hole in the wall of a hollow object is an excellent approximation.
Plank’s radiation formula: u(ν)dν=
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 is the spectral energy density of blackbody radiation.
Total energy density per unit area: u=
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Stefan-Boltzmann law: R=eσT4, where 0<e≦1 and σ=5.67×10-8 W/m2°K4
Eg. At what rate does radiation escape from a hole 1cm2 in area in the wall of a furnace whose interior is at 700°C?

(Sol.) 700°C=973°K, R=5.67×10-8×9734=50819.97W/m2
Power=50819.97×10-4=5.081W
Eg. How many photons are present in 1cm3 of radiation in thermal equilibrium at 1000°K? What is their average energy?

(Sol.) N=V
[image: image55.wmf]ò

ò

¥

¥

=

0

0

)

(

)

(

n

n

n

n

n

h

d

u

d

n

=2.03×1010 photons

[image: image56.wmf]E

=
[image: image57.wmf]ò

¥

0

)

(

n

n

d

u

/ n(ν)dν=σT4/(N/V)=3.73×10-20J=0.233eV
Wien’s displacement law: λmaxT=2.898×10-3m°K
(Proof) du(ν)=0
[image: image58.wmf]Þ

du(λ)=0
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 EMBED Equation.3  [image: image60.wmf]max
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λmaxT=2.898×10-3m°K
Eg. The temperature of the surface of a blue star is higher than that of a red star because λblue<λred.
Rayleigh-Jeans formula: u(ν)dν==
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(Proof) When ν is very small, ehν/kT
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u(ν)dν=
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7-5 Specific Heats of Solids

Einstein’s specific heat formula: Cv=
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 EMBED Equation.3  [image: image71.wmf]2
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 at constant volume, where R=N0k=8.31×103J/Kmol．°K=1.99Kcal/Kmol．°K
Modern theory of specific heat of electron gas in a metal:

Define j=2L/λ=2Lp/h=
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=g(E)dE. ∴ The total number of electrons is N=
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EF=
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 EMBED Equation.3  [image: image78.wmf]µ
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At T=0°K, the average energy 
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A detailed calculation shows that the specific heat of electron gas in a metal is Cve=
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, where EF is dependent on materials.

Eg. The Fermi energy of silver is 5.51eV. (a) What is the average energy of the free electrons in silver at 0°K. (b) What is the velocity of electron with this energy?

(Sol.) (a) 
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(b) Suppose v<<c, 
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v=1.0766×106m/sec
Eg. Find the Fermi energy of copper. The density of copper is 8.94×103Kg/m3 and its mass is 63.5u.

(Sol.) N/V=8.94×103/63.5×1.66×10-27=8.48×1028electrons/m3
EF=
[image: image88.wmf]3

/

2

2

8

3

2

÷

ø

ö

ç

è

æ

V

N

m

h

p

=1.13×10-18J=7.04eV
7-6 Dying Stars and the Chandrasekhar Limit
White dwarf star: After a star with original mass<8Msun run out of fuel, it becomes unstable. It swells to become a red giant, and eventually throws off its outer layer. The remaining core then cools and contracts gravitationally until its atoms collapse into nuclei and electrons packed closely together. ∵ EF
[image: image89.wmf]µ

V-2/3, ∴ EF increases as the volume decreases. When EF>kT, the electron form a degenerate gas. And only electrons with the highest energies can radiate by falling into the empty lower energy states. As the states lower than EF is filled, the star becomes dimmer and dimmer. After a few billion years, a white dwarf ceases to radiate and becomes a black dwarf. And the energies of its electrons are forever locked up below the Fermi level.

The size of a white dwarf is determined by a balance between the inward gravitational pull of its atomic nuclei and the pressure of its degenerate electron gas. A typical volume of a white dwarf which has a mass of the two-thirds of the sun is about the size of the earth.
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Neutron star (Pulsar): After a heavier star with original mass>8Msun run out of fuel, it collapses abruptly, and then to explode violently (Supernova). If the remnant of its mass>1.4Msun but <3Msun, the star contracts gravitationally and its electrons become more and more energetic. When EF
[image: image91.wmf]»

1.1MeV and the average electron energy is 0.8 MeV, an electron will react with a proton to produce a neutron. A typical radius of neutron star is about 10-15Km.
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The magnetic field of a pulsar traps tails of ionized gas that radiate lights, radio waves, and X-rays. If the magnetic axis of a neutron star is not aligned with the rotational axis, an observer on the earth will receive bursts of radiation as pulsar spin.
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Black hole: If the remnant of the mass of a dying star>~3Msun, It becomes a black hole. A black hole does not seem to end up as a point in a space because of the uncertainty principle, △p．△x≧
[image: image94.wmf]h

/2.
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The Chandrasekhar limit: The maximum white dwarf mass is 1.4Msun. Two observations: (1) Both the internal energy of a white dwarf and its gravitational potential energy vary with 1/R, where R is its radius. (2) The internal energy of a white dwarf is proportional to M, but its gravitational potential energy is proportional to M2.
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