Chapter 7 Statistical Mechanics

7-1 Maxwell-Boltzmann Distribution Function fMB(E)=Ag(E)e'E/ kT
For many identical particles which can be
distinguished in some ways, and a number of
particles in the same energy interval to occupy the

same small energy in space, the average number of

ni el

particles fus(E) in a state of energy FE 1is
fMB(E)ZAg(E)e'E/kT, where g(£) is the number of

0 kT ST INT states of energy of E, T is the absolute temperature,

€ and  k=1.381x107°J/°K=8.617x10"eV/°K s
Boltzmann’s constant.
Maxwell-Boltzmann distribution is suitable to analyze the behavior of an ideal

gas.

Eg. Obtain the relative populations of the rotational states of a rigid diatomic
molecule.

(Sol.) Ex=J(JA 1) h2/2L, L=AlJ(J + D, L=Mh, My =-J, -J+1, -J+2, ..., 0, ..., J-1,J
— g(E)=2J+1, .". n(E):A(zj+1)e—J(J+])h2/2IkT

Eg. At what temperature would one in thousand of atoms in a gas of atomic
hydrogen be in the first excited energy level?

(Sol.) Ground state 1s: mSZi% =g(E))=2

. 1
The first excited state 2s: I=0, m=0; 2p: I=1, m=-1, 0, 1; mSZiE = g(E»)=8

Ao (E Yo B/ 4T E
n(Ez)/n(El):l/IOOOZ g( 2)67E — — g( 2) _e_(Ez—El)/kT :8 e_(Ez_El)/kT /2:46—(E2—E1)/kT
Ag(E))e g(E))

Er-E=-13.6(1/2-1/1")=10.2eV = T=1.4271x10*°K

27N
(ﬂkT)3/2
(Proof) Consider a phase space (x,y.z,px,py.p,). The number of states g(p)dp with

Energy distribution of an ideal gas: n(E)dE= NEe*M dE

momenta whose magnitudes are between p and p+dp is g(p)dp « 4np2dp.
Set g(p)dp=Bp’dp, and p*=2mE=> g(E)dE=2m"*B\EdE
= n(E)dE=Ag(E)e ™" dE=2m*"ABNEe " dE=CNEe"" dE
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" Total number of molecules N= Iwn(E YAE = C=———>
0 (7T) /
= n(E)dE=————~

Total energy of N gas molecules: £= L ) En(E)dE :%TT

= 3KT _KT kT kT

Average molecular energy: F=——=—+
i 8y 2 2 2 2
- 3kT
RMS (root-mean-square) velocity: vrmszx/\T2 = | ==
m
2
T - 3kT
(Proof) E=3k—T= mv :>Vrms:\/V72 = |—
2 2 m
- |8kT
Average velocity: v= &
m
\/57221\71113/2 s - J.o va(v)dv _ kT

(Proof) E=mv*/2, dE=mvdv, n(v)dv=
(ke
[2kT
The most probable velocity: v,= 2k1
m

(Proof) dn(v)=0= v,=, ’Zk_T
m

72 vie 2 dy=y=
T) m

And we have

Vims™ V>Vp

niw)

L v
fol- root-mean-square speed =¥ 3kT/m

T = average speed = V8LT/mm

v, = most probable speed =¥ 2k T/m

Maxwell-Boltzmann speed distribution.
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7-2 Bose-Einstein Distribution Function fzr(E)=
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For identical and indistinguishable particles (bosons) that do not obey Pauli’s

exclusion principle, the probability that a boson occupies a state of energy E is

—1 Be*
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See(E)=
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Bose-Einstein distribution is suitable to analyze the effects such as photons in a
cavity, phonons in a solid, liquid He at the low temperatures, etc.
(1) Consider a system of distinguishable particles 1 and 2, one of which is in state a
and the other in state b.
If a#b, V=Y (1) Y, (2)£Y A2)Yr(1)=Y; else if a=b, V1=V o(1)¥5(2)=Yu(2)¥5(1)=Yu
(2) Consider a system of bosons 1 and 2, one of which is in state a and the other in
state b. Its wavefunction is Ws=[¥(1)¥5(2)+¥.(2)¥s(1)]/N2: symmetric
If a=b, [¥g ["=2| ()W) =W () WL(2)*=¥, |* or ¥y | if a=b
.". The probability that two bosons are in the same state is twice what it is for
distinguishable particles.
(3) Consider a system of fermions 1 and 2, one of which is in state a and the other in
state b. Its wavefunction is Pr=[W,(1)¥(2)-Pu(2)¥5(1)]/N2: antisymmetric.
If a=b, ¥y |*=0. It obeys Pauli’s exclusion principle.

1

7-3 Fermi-Dirac Distribution Function fFD(E)=T

e T +1

For identical and indistinguishable

particles (fermions) that obey Pauli’s
exclusion principle, the probability that a

fermion occupies a state of energy E is

feo By

e T +1

Fermi-Dirac distribution is suitable to
S=Grt) analyze the effects of free electrons in

metal, electrons in a star whose atoms have collapsed (white dwarf stars), etc.

Fermi energy (level), Eg: frp(Er)=0.5
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7-4 Blackbody Radiation
Blackbody: The most efficient absorber of

radiation, also the most efficient radiator. In

T=1800K
= fact, no true blackbody exists. But a hole in
=
2 the wall of a hollow object is an excellent
£ approximation.
=]
—E_ Plank’s radiation formula:
20 3
o 8w vidv .
= u(v)dv=——-————1is the spectral ener
= Mdv=—" P gy
= T=1200K ' o
B density of blackbody radiation.
Total energy density per unit area:
0 87[5k4 4
0 1X10M  4X10®  6X10'*Hz “__[0 u(vydv = 50 h
Mihieight Stefan-Boltzmann law: R=ccT®, where

Frequency, v

0<e=1 and 6=5.67x10" W/m*K*

Eg. At what rate does radiation escape from a hole 1cm? in area in the wall of a
furnace whose interior is at 700°C?

(Sol.) 700°C=973°K, R=5.67x10"°x973*=50819.97 W/m*
Power=50819.97x107=5.081 W

Eg. How many photons are present in 1cm® of radiation in thermal equilibrium

at 1000°K? What is their average energy?

(Sol) N=F["n(v)dv = [ 4V 5 63%10' photons
0 0 h 1%

E= jo “u()dv | n(v)dv=aT*/(N/V)=3.73x10"2°/=0.233eV

Wien’s displacement law: A, 7=2.898x 10°m°K

he
P du(v)=0= du(L)=0=
(Proof) du(v) u(™) A

max

=4.965 => Anax T=2.898% 10 m°K

Eg. The temperature of the surface of a blue star is higher than that of a red star

because Apjue<ired-

2
T
Rayleigh-Jeans formula: u(v)dv=— 87”/0#

(Proof) When v is very small, " ~ 1-+hv/kT,
8#h  vidv  8mh kTvidv _8zv’kTdv

3 Wik ~ T3 3
c’ e -1 ¢ hv c

= u(v)dv=



7-5 Specific Heats of Solids

E 2 hv/kT
Einstein’s specific heat formula: Cﬁ(é J =3R(hvj L at constant
V

8_T E ("' _1)?
volume, where R=Nok=8.3l><lO3J/Kmol - °K=1.99Kcal/Kmol - °K

Modern theory of specific heat of electron gas in a metal:

Define j=2L/X=2Lp/h=w , and then the number of electron states is

JEJE =g(E)dE. .". The total number of electrons is

o 8\2alm’?
g(/)a’FﬁJz@’J:h—3

E, 1622Vm*> 5, h (3N 2/3
N=["o(EYdE="X2""  p 32 sp="_|2 | o1
J, @) T F T om\ 8
1 8V2Vm**JEdE 3NE,”'*\EdE
fin(E) =———— and n(E)dE=g(E)fin(E)dE= — =
e T 41 (e ' +1) 2(e T +1)

p— EF
At T=0°K, the average energy FE = _[0 En(E)dE =3Ey/5
A detailed calculation shows that the specific heat of electron gas in a metal is

2
T

kT . .
5 [—JR , where Er 1s dependent on materials.

F

Eg. The Fermi energy of silver is 5.51eV. (a) What is the average energy of the
free electrons in silver at 0°K. (b) What is the velocity of electron with this

energy?
(Sol.) (a) E=3Ep/5=3.3eV
-31_..2
uppose v<<e, 20TV s o 61x1070 = v=1.0766x 10°m/sec
b) Supp 9.11 !

Eg. Find the Fermi energy of copper. The density of copper is 8.94x10°Kg/m’ and
its mass is 63.5u.
(Sol.) N/V=8.94x10°/63.5x1.66x107"=8.48x10"¢electrons/m’

F:_

2m

h* ( 3N
8V

2/3
) =1.13x1071%J=7.04eV



7-6 Dying Stars and the Chandrasekhar Limit

White dwarf star: After a star with original mass<8Mg,, run out of fuel, it becomes
unstable. It swells to become a red giant, and eventually throws off its outer layer. The
remaining core then cools and contracts gravitationally until its atoms collapse into
nuclei and electrons packed closely together. ".* Epoc V*°, .". Ep increases as the
volume decreases. When Ep>kT, the electron form a degenerate gas. And only
electrons with the highest energies can radiate by falling into the empty lower energy
states. As the states lower than Ef is filled, the star becomes dimmer and dimmer.
After a few billion years, a white dwarf ceases to radiate and becomes a black dwarf.
And the energies of its electrons are forever locked up below the Fermi level.

The size of a white dwarf is determined by a balance between the inward
gravitational pull of its atomic nuclei and the pressure of its degenerate electron gas. A
typical volume of a white dwarf which has a mass of the two-thirds of the sun is about
the size of the earth.

The Ring netula in the constellation Lyra = a shell of gas moving oubward from the
star at its center, which 15 in the process of becoming a white dwarf.

Neutron star (Pulsar): After a heavier star with original mass>8Mg,, run out of fuel,
it collapses abruptly, and then to explode violently (Supernova). If the remnant of its
mass>1.4Mg,, but <3My,,, the star contracts gravitationally and its electrons become
more and more energetic. When Er=1.1Mel and the average electron energy is 0.8
MeV, an electron will react with a proton to produce a neutron. A typical radius of

neutron star is about 10-15Km.



The Crab Mebula ts the result of a supemow explosion that was obserwed tn .o, 1054
The exgriosion lefi behind a star believed o conast enttrely of neupons. Statistical mechanics
15 peeded o undevstand the moperties of nenbion stars,

The magnetic field of a pulsar traps tails of ionized gas that radiate lights, radio

waves, and X-rays. If the magnetic axis of a neutron star is not aligned with the

rotational axis, an observer on the earth will receive bursts of radiation as pulsar spin.

The pulsar at the center of the Crab nebula flashes 30 times per second and is throught to
be a rotating nentron star, These photographs were taken at masxdmum and miniroum ermis-
sion. The nebula itself is shown in the photograph at the start of this chapter; it is now
about 10 light-vears across and is still expanding.

Black hole: If the remnant of the mass of a dying star>~3Mj,,, It becomes a black
hole. A black hole does not seem to end up as a point in a space because of the

uncertainty principle, A\p - Ax=#/2.



The Chandrasekhar limit: The maximum white dwarf mass is 1.4Mg,. Two
observations: (1) Both the internal energy of a white dwarf and its gravitational
potential energy vary with 1/R, where R is its radius. (2) The internal energy of a
white dwarf is proportional to M, but its gravitational potential energy is proportional
to M>.



