
Chapter 7 Statistical Mechanics 
7-1 Maxwell-Boltzmann Distribution Function fMB(E)=Ag(E)e-E/kT

For many identical particles which can be 
distinguished in some ways, and a number of 
particles in the same energy interval to occupy the 
same small energy in space, the average number of 
particles fMB(E) in a state of energy E is 
fMB(E)=Ag(E)e-E/kT, where g(E) is the number of 
states of energy of E, T is the absolute temperature, 
and k=1.381×10-23J/°K=8.617×10-5eV/°K is 
Boltzmann’s constant. 

Maxwell-Boltzmann distribution is suitable to analyze the behavior of an ideal 
gas. 

 
Eg. Obtain the relative populations of the rotational states of a rigid diatomic 
molecule. 

(Sol.) EJ=J(J+1)h 2/2I, L= h)1( +JJ , Lz=MJh , MJ =-J, -J+1, -J+2, …, 0, …, J-1, J 

⇒g(E)=2J+1, ∴ n(E)=A(2J+1)e- J(J+1) 2/2IkTh

 
Eg. At what temperature would one in thousand of atoms in a gas of atomic 
hydrogen be in the first excited energy level? 

(Sol.) Ground state 1s: ms=±
2
1
⇒g(E1)=2 

The first excited state 2s: l=0, ml=0; 2p: l=1, ml=-1, 0, 1; ms=±
2
1
⇒g(E2)=8 

n(E2)/n(E1)=1/1000= kTEE
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E2-E1=-13.6(1/22-1/12)=10.2eV T=1.4271×10⇒ 4°K 
 

Energy distribution of an ideal gas: n(E)dE= 23)(
2
kT

N
π
π √Ee-E/kTdE 

(Proof) Consider a phase space (x,y,z,px,py,pz). The number of states g(p)dp with 
momenta whose magnitudes are between p and p+dp is g(p)dp∝ 4πp2dp. 
Set g(p)dp=Bp2dp, and p2=2mE g(E)dE=2m⇒ 3/2B√EdE 
⇒n(E)dE=Ag(E)e-E/kTdE=2m3/2AB√Ee-E/kTdE=C√Ee-E/kTdE 



∵ Total number of molecules N= C=∫
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Total energy of N gas molecules: E= =∫
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Average molecular energy: E =
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RMS (root-mean-square) velocity: vrms= m
kTv 32 =  

(Proof) E =
2

3kT =
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⇒ vrms= m
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Average velocity: v =
m
kT
π
8  

(Proof) E=mv2/2, dE=mvdv, n(v)dv= kT
mv
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The most probable velocity: vp= m
kT2  

(Proof) dn(v)=0 v⇒ p= m
kT2  

And we have 
vrms> v >vp

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

7-2 Bose-Einstein Distribution Function fBE(E)=
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For identical and indistinguishable particles (bosons) that do not obey Pauli’s 
exclusion principle, the probability that a boson occupies a state of energy E is 

fBE(E)=
1
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Bose-Einstein distribution is suitable to analyze the effects such as photons in a 
cavity, phonons in a solid, liquid He at the low temperatures, etc. 
(1) Consider a system of distinguishable particles 1 and 2, one of which is in state a 
and the other in state b. 
If a≠b, ΨI=Ψa(1)Ψb(2)≠Ψa(2)Ψb(1)=ΨII; else if a=b, ΨI=Ψa(1)Ψb(2)=Ψa(2)Ψb(1)=ΨII 

(2) Consider a system of bosons 1 and 2, one of which is in state a and the other in 
state b. Its wavefunction is ΨB=[Ψa(1)Ψb(2)+Ψa(2)Ψb(1)]/√2: symmetric 
If a=b, |ΨB | =2|ΨB

2
a(1)Ψa(2)| >|Ψ2

a(1)Ψa(2)| =|Ψ2
I |  or |Ψ2

II |  if a=b 2

∴ The probability that two bosons are in the same state is twice what it is for 
distinguishable particles. 
(3) Consider a system of fermions 1 and 2, one of which is in state a and the other in 
state b. Its wavefunction is ΨF=[Ψa(1)Ψb(2)-Ψa(2)Ψb(1)]/√2: antisymmetric. 
If a=b, |ΨF |2=0. It obeys Pauli’s exclusion principle. 
 

7-3 Fermi-Dirac Distribution Function fFD(E)=
1
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For identical and indistinguishable 
particles (fermions) that obey Pauli’s 
exclusion principle, the probability that a 
fermion occupies a state of energy E is 

fFD(E)=
1
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+
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Fermi-Dirac distribution is suitable to 
analyze the effects of free electrons in 

metal, electrons in a star whose atoms have collapsed (white dwarf stars), etc. 
Fermi energy (level), EF: fFD(EF)=0.5 
 



 



7-4 Blackbody Radiation 
Blackbody: The most efficient absorber of 
radiation, also the most efficient radiator. In 
fact, no true blackbody exists. But a hole in 
the wall of a hollow object is an excellent 
approximation. 
Plank’s radiation formula: 

u(ν)dν=
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density of blackbody radiation. 
Total energy density per unit area: 
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Stefan-Boltzmann law: R=eσT4, where 
0<e≦1 and σ=5.67×10-8 W/m2°K4

Eg. At what rate does radiation escape from a hole 1cm2 in area in the wall of a 
furnace whose interior is at 700°C? 
(Sol.) 700°C=973°K, R=5.67×10-8×9734=50819.97W/m2

Power=50819.97×10-4=5.081W 
 
Eg. How many photons are present in 1cm3 of radiation in thermal equilibrium 
at 1000°K? What is their average energy? 

(Sol.) N=V ∫ ∫
∞ ∞

=
0 0

)()(
ν
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h
dudn =2.03×1010 photons 

E = / n(ν)dν=σT∫
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)( νν du 4/(N/V)=3.73×10-20J=0.233eV 

 
Wien’s displacement law: λmaxT=2.898×10-3m°K 

(Proof) du(ν)=0 du(λ)=0⇒⇒
maxλkT

hc =4.965⇒λmaxT=2.898×10-3m°K 

Eg. The temperature of the surface of a blue star is higher than that of a red star 
because λblue<λred. 
 

Rayleigh-Jeans formula: u(ν)dν== 3
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(Proof) When ν is very small, ehν/kT≈1+hν/kT, 
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7-5 Specific Heats of Solids 

Einstein’s specific heat formula: Cv=
VT
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volume, where R=N0k=8.31×103J/Kmol．°K=1.99Kcal/Kmol．°K 
Modern theory of specific heat of electron gas in a metal: 

Define j=2L/λ=2Lp/h=
h

mEL 22 , and then the number of electron states is 

g(j)dj=πj2dj= dEE
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At T=0°K, the average energy E = =3E∫
FE

dEEEn
0

)( F/5 

A detailed calculation shows that the specific heat of electron gas in a metal is 

Cve= R
E
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2π , where EF is dependent on materials. 

Eg. The Fermi energy of silver is 5.51eV. (a) What is the average energy of the 
free electrons in silver at 0°K. (b) What is the velocity of electron with this 
energy? 
(Sol.) (a) E =3EF/5=3.3eV 

(b) Suppose v<<c, 
2
1011.9 231 v−× =3.3×1.61×10-19⇒ v=1.0766×106m/sec 

 
Eg. Find the Fermi energy of copper. The density of copper is 8.94×103Kg/m3 and 
its mass is 63.5u. 
(Sol.) N/V=8.94×103/63.5×1.66×10-27=8.48×1028electrons/m3 
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7-6 Dying Stars and the Chandrasekhar Limit 
White dwarf star: After a star with original mass<8Msun run out of fuel, it becomes 
unstable. It swells to become a red giant, and eventually throws off its outer layer. The 
remaining core then cools and contracts gravitationally until its atoms collapse into 
nuclei and electrons packed closely together. ∵ EF∝ V-2/3, ∴ EF increases as the 
volume decreases. When EF>kT, the electron form a degenerate gas. And only 
electrons with the highest energies can radiate by falling into the empty lower energy 
states. As the states lower than EF is filled, the star becomes dimmer and dimmer. 
After a few billion years, a white dwarf ceases to radiate and becomes a black dwarf. 
And the energies of its electrons are forever locked up below the Fermi level. 
 The size of a white dwarf is determined by a balance between the inward 
gravitational pull of its atomic nuclei and the pressure of its degenerate electron gas. A 
typical volume of a white dwarf which has a mass of the two-thirds of the sun is about 
the size of the earth. 

 

 
Neutron star (Pulsar): After a heavier star with original mass>8Msun run out of fuel, 
it collapses abruptly, and then to explode violently (Supernova). If the remnant of its 
mass>1.4Msun but <3Msun, the star contracts gravitationally and its electrons become 
more and more energetic. When EF≈1.1MeV and the average electron energy is 0.8 
MeV, an electron will react with a proton to produce a neutron. A typical radius of 
neutron star is about 10-15Km. 



 
 The magnetic field of a pulsar traps tails of ionized gas that radiate lights, radio 
waves, and X-rays. If the magnetic axis of a neutron star is not aligned with the 
rotational axis, an observer on the earth will receive bursts of radiation as pulsar spin. 

 

 
Black hole: If the remnant of the mass of a dying star>~3Msun, It becomes a black 
hole. A black hole does not seem to end up as a point in a space because of the 
uncertainty principle, △p．△x≧h /2. 



 
 
The Chandrasekhar limit: The maximum white dwarf mass is 1.4Msun. Two 
observations: (1) Both the internal energy of a white dwarf and its gravitational 
potential energy vary with 1/R, where R is its radius. (2) The internal energy of a 
white dwarf is proportional to M, but its gravitational potential energy is proportional 
to M2. 


