Chapter 8 Solid States
8-1 Crystalline and Amorphous Solids
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Crystal: Crystalline solids exhibit long-range order.
Amorphous Solid: Crystalline solids exhibit short-range order.
Crystal defects:
Vacancy:
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Interstitial impurity:
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Substitution:
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Antisite defect:

[image: image7.png]


      [image: image8.png]



     Edge dislocation:                       Skew dislocation:
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Lattice: A periodical structure of atoms. Due to the periodicity of the lattice, we have 
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 and there exist several axes and planes of symmetry.
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Primitive vectors: 
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Translation vector: 
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Primitive cell: The parallel hexagonal region composed of 
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Wigner-Seitz cell: The region bounded by bisecting line of two adjacent atoms.
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Reciprocal lattice: The Fourier domain of original lattice by optical diffraction or electron beam diffraction.
Reciprocal lattice primitive vectors: 
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Translation vector in the reciprocal lattice: 
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 Bragg’s diffraction law: 
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Let 
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 EMBED Equation.3  [image: image31.wmf])
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 EMBED Equation.3  [image: image32.wmf])
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Similarly, 
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 and 
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Square lattice and its reciprocal lattice                  Hexagonal(triangular) lattice and its reciprocal lattice
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Brillouin Zones: Wigner-Seitz cells in the reciprocal lattice.
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Band diagram: Describe the relation between the energy and the momentum.

In quantum mechanics, the energy of n photons is Ephoton=nhν
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ω or ν), the energy of n phonons is Ephonon=(n+1/2)hν 
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, where h is the Plank’s constant, ν is the frequency, 
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, and ω=2πν. The downward transition of an electron between energy levels or bands may emit photons or phonons. The upward transition between energy levels or bands can absorb photons or phonons.

On the other hand, quantum mechanics shows that the momentum of an electron is p=mv=h/λ
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, where k=2π/λ is the wavenumber of matter wave.
We can depict the relation of the energy E (or ω) of electrons in a crystal versus k (or p). It is called E-k diagram or band diagram.

Eg. Two examples of band diagrams.

Direct bandgap: Eg. GaAs, GaxAl1-x As.
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The downward transition of an electron in a crystal of the direct bandgap can emit photons. (∵△k=△p=0, ∴ no variation in lattice momentum. All loss of energy due to downward transition must become radiation of photons).

Indirect bandgap: Eg. Crystalline Si.
[image: image46.jpg]Sexy





The downward transition of an electron in a crystal of the indirect bandgap can not emit photons, but it can cause lattice vibration and then generate heat or acoustic waves, etc. (∵△k≠0, i. e., △p≠0, There exists variation in lattice momentum. The loss of energy due to downward transition can become phonon radiation).

8-2 Ionic Crystals
[image: image47.jpg]



Ionic bonds: Ionic bonds between the atoms of two elements can be form when one atom becomes positive ion and the other element has a high electro affinity.

The Coulomb energy of ionic crystal is Vcoulomb=
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 and the potential energy due to repulsive force is Vrep=
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∵ At equilibrium, V is the minimum, ∴ dV/dr=0
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Lattice energy is V=
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Eg. In a NaCl crystal, the equilibrium distance r0 between ions is 0.281nm. Find the cohesive energy in NaCl.
(Sol.) α=1.748, n
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Eg. (a) The total potential energy in an ionic crystal is given by the equation: U=
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. Please show graphically the potential energy of this equation and explain the origin of these two terms. (b) Please calculate the value of the constant n for the NaCl molecule. (The binding energy of this molecule is 7.95 eV/molecule. The equilibrium distance between Na+ and Cl- ions is 2.8
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 and Madelung constant for the NaCl crystal is α=1.75. [台大電研]
8-3 Covalent Crystals
Covalent bonds: Shared electrons results in the strongest bonds.

Eg. Three crystalline structures of carbon: diamond, graphite, and bulkyball. And a diamond is the hardest material in nature.
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8-4 Van Der Waal Force and Ketallic Bonds
Van Der Waal Force: The force is a weak and short-range attraction among all molecules and atoms, due to polar molecules or polarized molecules.
[image: image1.jpg]« Boron atom

[~ Y-

@ »

Two-dimensional reptesentation of ByOs. (@) Amorphous 8,03 exhibits only short-range
order. () Crystalline 205 exhibits long-range order as well.



The dipole electric field is 
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 and the induced dipole moment is 
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And the Van Der Waal’s force=-dU/dr
[image: image71.wmf]µ
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Metallic bond: Metallic ions are surrounded by a gas of free electrons.
Comparison of various bonds:
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8-5 Band Theory of Semiconductor Devices
[image: image78.jpg]~ =
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(a) Metal: The conduction band and the valence band may overlap. (b) Semiconductor: The bandgap between the conduction band and the valence band is very small. The electron can be easily excited into the conduction band to become a free electron. (c) Insulator: The bandgap between the conduction band and the valence band is very large. The electron is hardly excited into the conduction band to become a free electron.
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Intrinsic semiconductor:

EF
[image: image74.wmf]»



 EMBED Equation.3  [image: image75.wmf]2
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The n-type semiconductor:
EF is near Ec.
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The p-type semiconductor:
EF is near Ev.

Bandgap theory of diode:
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Fig. (a) No bias: EF(p)=EF(n)

Fig. (b) Reverse bias: EF(p)>EF(n), entrance of electrons becomes more difficult than the case of no bias. ∴ Current ceases.
Fig. (c) Forward bias: EF(p)<EF(n), entrance of electrons becomes easier than the case of no bias. ∴ Current increases as the forward bias voltage.
Bandgap theory of tunnel diode: The both p- and n-regions of the tunnel diode are heavily doped. And the depletion region is very narrow.

Fig. (a) No bias: EF(p)=EF(n), electrons tunnel in both direction are equal.
Fig. (b) Small forward bias (From point a→b→c of I-V curve): Electrons tunnel from n-region to p-region only, because the filled lower part of n-region conduction band is opposite the empty upper part of the p-region valence band.

Fig. (c) Larger forward bias: The two bands no longer overlap. The tunnel current therefore cease. From now on the tunnel diode behaves exactly like an ordinary junction diode.
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Bandgap theory of n-p-n transistor:
[image: image84.jpg]


The transistor is given a forward bias across the emitter-base junction and a reverse bias across the base-collector junction. The emitter is more heavily doped than base, so nearly all the current across the emitter-base junction consists of electrons moving from left to right.
Fig. (a) No bias: EF(emitter)=EF(base)=EF(collector)
Fig. (b) Small forward bias across the emitter-base junction and large reverse bias across the base-collector junction:
∵ The base is very thin and V2e is small, electrons can pass through it from the emitter to the collector without recombining with holes there.

∴ Most of electrons can reach the collector. Once the electrons arrive at the collector, they lose energy due to collisions. And then they can not return to base because the potential hill V2e is too high.
Bandgap theory of pin photodiode
The pin photodiode is given a reverse bias across the diode. The intrinsic layer (i) is lightly n-doped.
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Field-Effect (FET) transistor: FET is like a switch. It utilizes the gate voltage to control the channel current.
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