Chapter 1 Vector Spaces

1-1 Vector Spaces and Linear Combinations

Vector space $V: V$ is a set over a field F if $\forall x, y \in V$ and $\forall a, b \in F, \exists$! $a x+b y \in V$.
Eg. R^{2} is a vector space. For $(a, b),(c, d) \in R^{2}$, we can check: $-4(a, b)=(-4 a,-4 b) \in R^{2}, 3(a, b)-7(c, d)=(3 a-7 c, 3 b-7 d) \in R^{2}$, etc.

Eg. Show that the set of all polynomials $P(F)$ with coefficients from F is a vector space.
(Proof) $\left.\begin{array}{l}x: f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\ y: g(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}\end{array}\right\} \in P(F), \quad \forall a, b \in F,(a f+b g)(x)=a f(x)+b g(x) \in P(F)$

Subspace, W : A subset W of V is subspace of $V \Leftrightarrow\left\{\begin{array}{l}(1) x+y \in W, \text { where } x \in W \text { and } y \in W \\ \text { (2) } a x \in W, \text { where } a \in F \text { and } x \in W \\ (3) 0 \text { in } V \Rightarrow 0 \in W \\ (4) x+y=0 \text { for } x \in W \Rightarrow y \in W\end{array}\right.$
Eg. R^{2} is a subspace of R^{3}. For $(a, b, 0),(c, d, 0) \in R^{2}$, we can check: $(a, b, 0)+(c, d, 0)=(a+c, b+d, 0) \in R^{2}$, $\mathbf{- 3}(a, b, 0)=(-3 a,-3 b, 0) \in R^{2},(0,0,0) \in R^{2},(a, b, 0)+(-a,-b, 0)=(0,0,0)$ and then $(-a,-b, 0) \in R^{2}$, etc.

Eg. V and $\{0\}$ are both subspace of V.

Theorem Any intersection of subspaces of a vector space V is a subspace of V.
Theorem W_{1} and W_{2} are subspaces of V, then $W_{1} \cup W_{2}$ is a subspace $\Leftrightarrow W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.

Sum of two sets, $\boldsymbol{S}_{1}+\boldsymbol{S}_{2}: S_{1}+S_{2}=\left\{x+y: x \in S_{1}\right.$ and $\left.y \in S_{2}\right\}$.
Eg. Let $S_{1}=\{\cos (x), \cos (2 x), \cos (3 x), \ldots\}$ and $S_{2}=\{\sin (x), \sin (2 x), \sin (3 x), \ldots\}$, then $S_{1}+S_{2}=\{\cos (x)+\sin (2 x), \cos (2 x)+\sin (3 x), \cos (5 x)+\sin (x), \ldots\}$.

Theorem W_{1} and W_{2} are subspace of V, then $W_{1}+W_{2}$ is the smallest subspace that contains both W_{1} and W_{2}.

Direct Sum, $\boldsymbol{W}_{1} \oplus \boldsymbol{W}_{2}: W_{1} \oplus W_{2}$ if $W_{1} \cap W_{2}=\{0\}$ and $W=W_{1}+W_{2}$.
Eg. $\boldsymbol{F}^{\mathrm{n}}=W_{1} \oplus W_{2}$, where $W_{1}=\left\{\left(a_{1}, \cdots, a_{n-1}, 0\right) \in F^{n}: a_{n}=0\right\}$
$W_{2}=\left\{\left(0, \cdots, 0, a_{n}\right) \in F^{n}: a_{1}=a_{2}=\cdots=a_{n-1}=0\right\}$

$$
\begin{aligned}
& W_{1}=\left\{f(x)=a_{2 n+1} x^{2 n+1}+\cdots+a_{1} x: a_{0}=a_{2}=a_{4}=\cdots=0\right\} \\
& W_{2}=\left\{g(x)=b_{2 m} x^{2 m}+\cdots+b_{0}: b_{1}=b_{3}=b_{5}=\cdots=0\right\}
\end{aligned}
$$

Even function: $f(-x)=f(x)$, Odd function: $f(-x)=-f(x)$
Eg. $x^{2}, x^{2}-7 x^{10}, \cos (x)$ are even functions, but $x, 3 x-2 x^{3}+5 x^{7}, \sin (4 x)$ are odd functions.

Theorem W_{1} and W_{2} are the set of all even functions and the set of all odd functions in $F(C, C)$, respectively. Then $F(C, C)=W_{1} \oplus W_{2}$.
(Proof) 1. W_{1}, W_{2} are both subspaces of $F(C, C)$
2. $f(x) \in W_{1} \cap W_{2}, f(x)=f(-x)=-f(x) \Rightarrow f(x)=0, \therefore W_{1} \cap W_{2}=\{0\}$

Let $\left\{\begin{array}{l}h(x)=\frac{1}{2}[g(x)+g(-x)] \\ i(x)=\frac{1}{2}[g(x)-g(-x)]\end{array}\right.$, then $h(x) \in W_{1}, i(x) \in W_{2}, \therefore F(C, C)=W_{1} \oplus W_{2}$.

Theorem Let W_{1} and W_{2} be two subspaces of a vector space V over F, and then $V=W_{1} \oplus W_{2} \Leftrightarrow \forall x \in V, \exists!x_{1} \in W_{1}, \exists!x_{2} \in W_{2}$ such that $x=x_{1}+x_{2}$.
(Proof) Suppose $x=x_{1}+x_{2}=y_{1}+y_{2},\left\{\begin{array}{l}x_{1} \\ y_{1}\end{array} \in W_{1},\left\{\begin{array}{l}x_{2} \\ y_{2}\end{array} \in W_{2}, x_{1}-y_{1}=y_{2}-x_{2}\right.\right.$
$\because x_{1}-y_{1} \in W_{1}, y_{2}-x_{2} \in W_{2}, \therefore x_{1}-y_{1}=y_{2}-x_{2} \in W_{1} \cap W_{2}=\{0\} \Rightarrow x_{1}=y_{1}, x_{2}=y_{2}$.

Eg. Let W_{1}, W_{2}, and W_{3} denote the x-, the y-, and the z-axis, respectively. Then $R^{3}=W_{1} \oplus W_{2} \oplus W_{3}$, $W_{\mathrm{i}} \cap\left(\sum_{j \neq i} W_{j}\right)=\{0\} . \quad \forall(a, b, c) \in R^{3},(a, b, c)=(a, 0,0)+(0, b, 0)+(0,0, c)$, where $(a, 0,0) \in W_{1},(0, b, 0) \in W_{2}$, $(0,0, c) \in W_{3} . \therefore R^{3}$ is uniquely represented as a direct sum of W_{1}, W_{2}, and W_{3}.

Eg. Let W_{1} and W_{2} denote the $x y$ - and the $y z$-planes, respectively. Then $R^{3}=W_{1}+W_{2}$ and $W_{1} \cap W_{2}=\{(x, y, z) \mid x=z=0\} \neq\{0\} . \forall(a, b, c) \in R^{3},(a, b, c)=(a, 0,0)+(0, b, c)=(a, b, 0)+(0,0, c)$, where $(a, 0,0)$, $(a, b, 0) \in W_{1}$ and $(0, b, c),(0,0, c) \in W_{2}, \therefore R^{3}$ can not be uniquely represented as a direct sum of W_{1} and W_{2}.

Theorem W is a subspace of V and $x_{1}, x_{2}, x_{3}, \ldots, x_{\mathrm{n}}$ are elements of W, then $\sum_{i=1}^{n} a_{i} x_{i}$ is an element of \boldsymbol{W} for any a_{i} over \boldsymbol{F}.
(Proof) $n=2$, it holds by definition. Suppose $n=k(k \geq 2), \sum_{i=1}^{i=k} a_{i} x_{i}$ is an element of W, and then $n=k+1$, $\sum_{i=1}^{i=k+1} a_{i} x_{i}=a_{k+1} x_{k+1}+\left(\sum_{i=1}^{i=k} a_{i} x_{i}\right)$ is also an element of W by definition. \therefore the proof is complete.

Linear combination, $\boldsymbol{y}=\boldsymbol{a}_{1} \boldsymbol{x}_{1}+\boldsymbol{a}_{2} x_{2}+\ldots+\boldsymbol{a}_{\mathrm{n}} x_{\mathrm{n}}$: It is called the linear combination of $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ in V, where $a_{\mathrm{i}} \in F, \forall i \in n, x \in S$ and S is a nonempty subset of V.
$\boldsymbol{\operatorname { S p a n }}(\boldsymbol{S})$ (the subspace generated by the elements of S): The subspace consists of all linear combinations of elements of S.
Eg. $S=\{x . y\}$, then $\operatorname{Span}(S)=\{a x+b y: \forall a, b \in F\}=\{3 x-2 y,-6 x+1.5 y, 4.3 x+7.45 y, 2 x,-7 y, \ldots\}$.

Theorem（a）S is a nonempty subset of $V \Rightarrow \operatorname{Span}(S)$ is a subspace of V ．（b） $\operatorname{Span}(S)$ is the smallest subspace of V containing S in the sense that $\operatorname{Span}(S)$ is a subset of only subspace of V that contains S ．
Eg．$\because \forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \boldsymbol{F},\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]+c\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]+d\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ ，
$\therefore M_{2 \times 2}(\boldsymbol{R})=\operatorname{Span}\left(\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}\right)$ ．

Eg．$\because(a, b, c)=\boldsymbol{a}(\mathbf{1}, \mathbf{0}, \mathbf{0})+\boldsymbol{b}(\mathbf{0}, \mathbf{1}, \mathbf{0})+\boldsymbol{c}(\mathbf{0}, \mathbf{0}, \mathbf{1})=\frac{a+b-c}{2}(\mathbf{1}, \mathbf{1}, \mathbf{0})+\frac{a+c-b}{2}(\mathbf{1}, \mathbf{0}, \mathbf{1})+\frac{b+c-a}{2}(\mathbf{0}, \mathbf{1}, \mathbf{1}) \quad \forall a, b$, $c \in F, \therefore R^{3}=\operatorname{Span}(\{(1,0,0),(0,1,0),(0,0,1)\})=\operatorname{Span}(\{(1,1,0),(1,0,1),(0,1,1)\})$ ．
Eg ．Plot $\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \cup \operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ ．［2006 台科大電子所］
（Sol．） $\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=a\left[\begin{array}{l}1 \\ 1\end{array}\right]:$ a line of $x=y, \operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=b\left[\begin{array}{l}0 \\ 1\end{array}\right]:$ the y－axis． $\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \cup \operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$ ：a union of $x=y$ and the y－axis．Note： $\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right) \cup \operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right) \neq \operatorname{Span}\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)+\operatorname{Span}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}a \\ a+b\end{array}\right]$ is the $x y$－plane．

Eg．Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be linearly independent set and their coefficients be selected from $\{0,1\}$ ． How many elements are there in $\operatorname{Span}(S)$ ？
（Sol．）If $y \in \operatorname{Span}(S), y=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{\mathrm{n}} x_{\mathrm{n}}, \quad a_{i}=\left\{\begin{array}{l}0 \\ 1\end{array}, \therefore 2^{\mathrm{n}}\right.$ elements．

Theorem $\operatorname{Span}(\varphi)=\{0\}$ ．
Theorem A subset W of a vector space V is a subspace of $V \Leftrightarrow \operatorname{Span}(W)=W$ ．
（Proof）＂\Leftarrow＂：$\because \operatorname{Span}(W)$ is a subspace of $V, \therefore W=\operatorname{Span}(W)$ is a subspace of V ．
$" \Rightarrow ":$ If $\operatorname{Span}(W)=W^{\prime} \neq W, W^{\prime}$ is a subspace of V ．
$\because W^{\prime}=\operatorname{Span}(W)$ is the smallest subspace of V containing $W, \therefore W$ is a not subspace of V ．
It is contradictory to the statement．$\therefore \operatorname{Span}(W)=W^{\prime}=W$ ．

Theorem（a）If S_{1} and S_{2} are subspace of V and $S_{1} \subseteq S_{2}$ ，then $\operatorname{Span}\left(S_{1}\right) \subseteq \operatorname{Span}\left(S_{2}\right)$ ．
（b） $\operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(\boldsymbol{S}_{1}\right) \cap \operatorname{Span}\left(\boldsymbol{S}_{2}\right)$ 。［台大電研］
（Proof）（a）$y=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \in \operatorname{Span}\left(S_{1}\right), a_{\mathrm{i}} \in F$ and $x_{\mathrm{i}} \in S_{1}$
$\because S_{1} \subseteq S_{2}, \therefore x_{i} \in S_{2} \Rightarrow y \in \operatorname{Span}\left(S_{2}\right), \therefore \operatorname{Span}\left(S_{1}\right) \subset \operatorname{Span}\left(S_{2}\right)$
（b）$\because S_{1} \cap S_{2} \subseteq S_{1}, \therefore \operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(S_{1}\right) \cdots(1)$
and $S_{1} \cap S_{2} \subseteq S_{2}, \therefore \operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(S_{2}\right) \cdots(2)$
by（1），（2）$\Rightarrow \operatorname{Span}\left(S_{1} \cap S_{2}\right) \subseteq \operatorname{Span}\left(S_{1}\right) \cap \operatorname{Span}\left(S_{2}\right)$

Theorem If S_{1} and S_{2} are subspace of V ，then $\operatorname{Span}\left(S_{1} \cup S_{2}\right)=\operatorname{Span}\left(S_{1}\right)+\operatorname{Span}\left(S_{2}\right)$ ．［台大電硏］
（Proof）$\because\left\{\begin{array}{l}S_{1} \\ S_{2}\end{array} \subset\left(S_{1} \cup S_{2}\right), \therefore\left\{\begin{array}{l}\operatorname{Span}\left(S_{1}\right) \\ \operatorname{Span}\left(S_{2}\right)\end{array} \subseteq \operatorname{Span}\left(S_{1} \cup S_{2}\right)\right.\right.$
Suppose $\operatorname{Span}\left(S_{1} \cup S_{2}\right)=\operatorname{Span}\left(S_{1}\right)+\operatorname{Span}\left(S_{2}\right)+W$ ，where W is independent of S_{1} and S_{2} ，and $W \subseteq V\left(\because S_{1}, S_{2} \subseteq V\right)$ ．Let $S_{1}=S_{2} \Rightarrow W=\phi, \therefore \operatorname{Span}\left(S_{1} \cup S_{2}\right)=\operatorname{Span}\left(S_{1}\right)+\operatorname{Span}\left(S_{2}\right)$

1－2 Linear Dependence and Linear Independence

Linear dependence $\&$ linear independence：For $x_{1}, x_{2}, \ldots, x_{\mathrm{n}} \in S, \sum_{i=1}^{n} a_{i} x_{i}=0$ if $\exists a_{1}, a_{2}, \ldots, a_{\mathrm{n}}$ are all zeros，then S is linearly independent；otherwise，S is linearly dependent．

Theorem V is a vector space，$S_{1} \subseteq S_{2} \subseteq V$ ．
（a）If S_{1} is linearly dependent，then S_{2} is also linearly dependent．
（b）If S_{2} is linearly independent，then S_{1} is also linearly independent．

Basis：A basis β for a vector space V is a linearly independent subset of V that generates V ．
Dimension， $\boldsymbol{\operatorname { d i m }}(\boldsymbol{V})$ ：The unique number of elements in each basis for V ．

Theorem If $V=W_{1} \oplus W_{2}$ ，then $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$ ．

Eg．$\forall\left[\begin{array}{l}a \\ b\end{array}\right] \in \boldsymbol{R}^{2}$ ，we have $\left[\begin{array}{l}a \\ b\end{array}\right]=\boldsymbol{a}\left[\begin{array}{l}1 \\ 0\end{array}\right]+\boldsymbol{b}\left[\begin{array}{l}0 \\ 1\end{array}\right]$ ．Thus $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is the basis of \boldsymbol{R}^{2} and $\operatorname{dim}\left(\boldsymbol{R}^{2}\right)=\mathbf{2}$ ．

Eg．$\forall\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \boldsymbol{R}^{3}$ ，we have $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\boldsymbol{a}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+\boldsymbol{b}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+\boldsymbol{c}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ ．Thus $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is the basis of \boldsymbol{R}^{3} and $\operatorname{dim}\left(R^{3}\right)=3$.

Eg．For $W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \in R^{5}: a_{1}+a_{3}+a_{5}=0, a_{2}=a_{4}\right\}$ ，find a basis of W and $\operatorname{dim}(W)$ ．
（Sol．）$a_{1}+a_{3}+a_{5}=0$ ．Set $a_{1}=r, a_{3}=s, a_{5}=-r-s$ ，and set $a_{2}=a_{4}=t$ ．
$\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(r, t, s, t,-r-s)=r(1,0,0,0,-1)+t(0,1,0,1,0)+s(0,0,1,0,-1)$
Basis of $W:\{(1,0,0,0,-1),(0,1,0,1,0),(0,0,1,0,-1)\}$ and $\operatorname{dim}(W)=3$ ．

Eg．Let $V=\operatorname{Span}\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ ，where $\boldsymbol{A}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], \boldsymbol{A}_{2}=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -1 & 1\end{array}\right], A_{3}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]$ ，and $A_{4}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1 \\ 1 & 0\end{array}\right]$ ．Find
a basis for V ．［2005台大電硏］
（Sol．）$a A_{1}+b A_{2}+c A_{3}+d A_{4}=\left[\begin{array}{cc}a+b+c+d & 0 \\ 0 & a+b+c-d \\ a-b+d & a+b+c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 00\end{array}\right] \Rightarrow\left\{\begin{array}{c}a=r \\ b=r \\ c=-2 r \\ d=0\end{array}\right.$
$\therefore A_{1}, A_{2}, A_{3}$ ，and A_{4} are linearly dependent．In fact， $0.5 A_{1}+0.5 A_{2}=A_{3}$ ．
We can drop A_{3} ，
$a^{\prime} A_{1}+b^{\prime} A_{2}+c^{\prime} A_{4}=\left[\begin{array}{cc}a^{\prime}+b^{\prime}+c^{\prime} & 0 \\ 0 & a^{\prime}+b^{\prime}-c^{\prime} \\ a^{\prime}-b^{\prime}+c^{\prime} & a^{\prime}+b^{\prime}\end{array}\right]=\left[\begin{array}{l}0 \\ 00 \\ 00\end{array}\right] \Rightarrow\left\{\begin{array}{l}a^{\prime}=0 \\ b^{\prime}=0, \therefore A_{1}, A_{2}, \text { and } A_{4} \text { are linearly independent．} \\ c^{\prime}=0\end{array}\right.$
$\therefore\left\{A_{1}, A_{2}, A_{4}\right\}$ is the basis of V ．

Theorem $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis for $V \Leftrightarrow y \in V$ can be uniquely expressed as a linear combination of vectors in β ．
（Proof）If $y=a_{1} x_{1}+\cdots+a_{n} x_{n}=b_{1} x_{1}+\cdots+b_{n} x_{n}, 0=\left(a_{1}-b_{1}\right) x_{1}+\cdots+\left(a_{n}-b_{n}\right) x_{n}$
$\because \beta$ is linearly independent，$\therefore a_{1}-b_{1}=\cdots=a_{n}-b_{n}=0 \Rightarrow a_{1}=b_{1}, \cdots, a_{n}=b_{n}$

Theorem S is a linearly independent subset of V ，and let $x \in V$ but $x \notin S$ ．Then $S \cup\{x\}$ is linearly dependent $\Leftrightarrow x \in \operatorname{Span}(S)$ ．

Eg．Show that in case $\beta=\left\{x_{1}, x_{2}, x_{3}\right\}$ be a basis in R^{3} ，then $\beta,=\left\{x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}\right\}$ is also a basis in \boldsymbol{R}^{3} 。［文化電機轉學考］
（Proof）Set $a_{1} x_{1}+a_{2}\left(x_{1}+x_{2}\right)+a_{3}\left(x_{1}+x_{2}+x_{3}\right)=0 \cdots$（1）．If $a_{1}=a_{2}=a_{3}=0$ ，then $x_{1}, x_{1}+x_{2}$ ， $x_{1}+x_{2}+x_{3}$ are linearly independent
（1）$\Rightarrow\left(a_{1}+a_{2}+a_{3}\right) x_{1}+\left(a_{2}+a_{3}\right) x_{2}+a_{3} x_{3}=0 \cdots(2)$
$\Rightarrow\left\{\begin{array}{l}a_{1}+a_{2}+a_{3}=0 \\ a_{2}+a_{3}=0 \\ a_{3}=0\end{array} \Rightarrow\left\{\begin{array}{l}a_{1}=0 \\ a_{2}=0, \therefore x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3} \text { are linearly independent．} \\ a_{3}=0\end{array}\right.\right.$
$\because \operatorname{dim}\left(R^{3}\right)=3, \therefore \beta^{\prime}$ is a basis of R^{3} ．
Another method：$\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{1}+x_{2}+x_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \operatorname{det}\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right]\right)=1 \neq 0, \therefore \beta^{\prime}$ is also a basis of R^{3} ．

Eg．Determine whether the given set of vectors is linearly independent？［交大電信所］
（a）$\{(1,0,0),(1,1,0),(1,1,1)\}$ in R^{3} ．
（b）$\{(1,-2,1),(3,-5,2),(2,-3,6),(1,2,1)\}$ in R^{3} ．
（c）$\{(1,-3,2),(2,-5,3),(4,0,1)\}$ in R^{3} ．
（Sol．）（a） $\operatorname{det}\left(\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\right)=1 \neq 0, \therefore$ Linearly independent．（b） 4 vectors in R^{3}, \therefore Linearly dependent．
（c） $\operatorname{det}\left(\left[\begin{array}{ccc}1 & 2 & 4 \\ -3 & -5 & 0 \\ 2 & 3 & 1\end{array}\right]\right)=-5-36+40+6=5 \neq 0, \therefore$ Linearly independent．

Eg．Are $(x-1)(x-2)$ and $|x-1| \cdot(x-2)$ linearly independent？［1990 中央土木所］
（Sol．）1．If $1<x, c_{1}(x-1)(x-2)+c_{2}|x-1|(x-2)=c_{1}(x-1)(x-2)+c_{2}(x-1)(x-2)=0 \Rightarrow c_{1}=-c_{2}$

2．If $x<1, c_{1}(x-1)(x-2)+c_{2}|x-1|(x-2)=c_{1}(x-1)(x-2)-c_{2}(x-1)(x-2)=0 \Rightarrow c_{1}=c_{2}$
（1），（2）hold $\Rightarrow c_{1}=c_{2}=0, \therefore$ Linearly independent．

Eg．Given a matrix $\boldsymbol{A}=\left[\begin{array}{cc}5 & 3 \\ 1 & -2\end{array}\right]$ and a set of matrices $\boldsymbol{S}=\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}0 & 2 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$ ．
Determine if S is a linearly independent subset of $M_{2 \times 2}$ ，the vector space of all $\mathbf{2 \times 2}$ matrices？
Represent the matrix A as a linear combination of the vectors in the set S ．What are the corresponding coefficients？［台大電硏］
（Sol．）Let $a\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]+c\left[\begin{array}{cc}0 & 2 \\ 0 & -1\end{array}\right]+d\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \Rightarrow\left\{\begin{array}{c}a=0 \\ 2 c+d=0 \\ b+d=0 \\ b-c=0\end{array} \Rightarrow a=b=c=d=0\right.$
$\therefore S=\left\{\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}0 & 2 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$ is a linearly independent subset of $M_{2 \times 2}$ ．
Let $\left[\begin{array}{cc}5 & 3 \\ 1 & -2\end{array}\right]=e\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]+f\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]+g\left[\begin{array}{cc}0 & 2 \\ 0 & -1\end{array}\right]+h\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \Rightarrow\left\{\begin{array}{c}e=5 \\ e+2 g+h=3 \\ e+f+h=1 \\ f-g=-2\end{array} \Rightarrow\left\{\begin{array}{c}e=5 \\ f=-2 \\ g=0 \\ h=-2\end{array}\right.\right.$

Eg．W_{1} and W_{2} are finite－dimensional subspace of V ，and $\operatorname{dim}\left(W_{1}\right)=m, \operatorname{dim}\left(W_{2}\right)=n(m \geq n)$ ，then $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leqq \boldsymbol{n}$ and $\operatorname{dim}\left(\boldsymbol{W}_{1}+W_{2}\right) \leq \boldsymbol{m}+\boldsymbol{n}$ ．［2010 台大電研］
（Proof）1．$W_{1} \cap W_{2} \subseteq W_{2}, \therefore \operatorname{dim}\left(W_{1} \cap W_{2}\right) \leqq \operatorname{dim}\left(W_{2}\right)=n$
2． $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right), \because \operatorname{dim}\left(W_{1} \cap W_{2}\right) \geqq 0, \therefore \operatorname{dim}\left(W_{1}+W_{2}\right) \leq m+n$

Eg．Let \boldsymbol{v} be the span of the set of vectors $S=\{(1,-1,3),(0,2,1),(1,3,5)\}$ ．（a）What is the dimension of \boldsymbol{v} ？
（b）Can we use \boldsymbol{S} as a basis of \boldsymbol{v} ？［2006台科大電研］
（Sol．）（a）Let $a(1,-1,3)+b(0,2,1)+c(1,3,5)=(0,0,0) \Rightarrow a=-1, b=-2, c=1, \therefore S=\{(1,-1,3),(0,2,1),(1,3,5)\}$ is linearly dependent．$\because S^{\prime}=\{(0,2,1),(1,3,5)\}$ is linearly independent，$\therefore \operatorname{dim}(v)=2$ ．
（b）No！

Transpose of a $\boldsymbol{m} \times \boldsymbol{n}$ matrix $\boldsymbol{M}, \boldsymbol{M}^{\mathrm{t}}:$ An $n \times m$ matrix M^{t} ，in which $\left(M^{t}\right)_{\mathrm{ij}}=M_{\mathrm{ji}}$ ．
Eg． $\boldsymbol{M}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$ ，then $\boldsymbol{M}^{\mathrm{t}}=\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$ ．

In Matlab language，we can use the following instructions to obtain the transpose of a matrix：
$\gg A=[2,5 ; 0,3]$
$\mathrm{A}=$
25
03
$\gg C=A^{\prime}$
$\mathrm{C}=$
20
53

Symmetric matrix：$M=M^{\mathrm{t}}$ ；that is，$M_{\mathrm{ij}}=M_{\mathrm{ji}}$ ．
Skew symmetric matrix：$M=-M^{t}$ ；that is，$M_{\mathrm{ij}}=-M_{\mathrm{ji}}, \quad \forall i \neq j$ ，and $M_{\mathrm{ij}}=0, \quad \forall i=j$ ．
Eg． $\boldsymbol{A}=\left[\begin{array}{ccc}1 & 3 & -0.6 \\ 3 & 2 & 7 \\ -0.6 & 7 & -8\end{array}\right]$ is a symmetric matrix． $\boldsymbol{B}=\left[\begin{array}{cc}0 & -3.5 \\ 3.5 & 0\end{array}\right]$ is a skew symmetric matrix．

Eg．Show that the set of all square matrices can be decomposed into the direct sum of the set of the symmetric matrices and that of the skew－symmetric ones．［文化電機轉學考］
（Proof）1．The set of the symmetric matrices W_{1} and the set of the skew－symmetric matrices W_{2} are both subspaces of $M_{\mathrm{n} \times \mathrm{n}}(F)$

$$
\text { 2. } A \in W_{1} \cap W_{2}, A=A^{\dagger}=-A^{\dagger} \Rightarrow A=0, \therefore W_{1} \cap W_{2}=\{0\}
$$

Let $\left\{\begin{array}{l}B=\frac{1}{2}\left[A+A^{t}\right] \\ C=\frac{1}{2}\left[A-A^{t}\right]\end{array}\right.$ ，then $B \in W_{1}, C \in W_{2}, \therefore M_{\mathrm{n} \times \mathrm{n}}(F)=W_{1} \oplus W_{2}$ ．

Eg．The set of symmetric $n \times n$ matrices $M_{\mathrm{n} \times \mathrm{n}}(F)$ is a subspace W ．Find a basis for \boldsymbol{W} and $\operatorname{dim}(W)$ ． ［文化電機轉學考］
（Sol．）$\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ a_{n 1} & \cdots & \cdots & a_{n n}\end{array}\right]$ ，where $a_{\mathrm{ij}}=a_{\mathrm{ji}}$ ．

$$
[\cdots]=a_{11}\left[\begin{array}{ccccc}
1 & & & & \\
& 0 & & 0 & \\
& & 0 & & \\
& 0 & & \ddots & \\
& & & & 0
\end{array}\right]+a_{22}\left[\begin{array}{ccccc}
0 & 0 & \cdots & & 0 \\
& 1 & & & \\
& & 0 & & \\
& 0 & & \ddots & \\
& & & & 0
\end{array}\right]+\cdots+a_{n n}\left[\begin{array}{lllll}
0 & & & & \\
& 0 & & 0 & \\
& & \ddots & & \\
& 0 & & 0 & \\
& & & & 1
\end{array}\right]
$$

$$
+a_{12}\left[\begin{array}{ccccc}
0 & 1 & & & \\
1 & 0 & & 0 & \\
& & 0 & & \\
& 0 & & \ddots & \\
& & & 0
\end{array}\right]+a_{13}\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & & \\
1 & 0 & 0 & & \\
& 0 & & \ddots & \\
& & & & 0
\end{array}\right]+\cdots+a_{1 n}\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
\vdots & 0 & & 0 & \\
& & \ddots & & \\
0 & 0 & & 0 & \\
1 & & & & 0
\end{array}\right]
$$

$$
+a_{23}\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
0 & 0 & 1 & 0 & \\
0 & 1 & 0 & & \\
0 & 0 & & \ddots & \\
& & & & 0
\end{array}\right]+a_{24}\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \\
0 & 0 & 0 & & \\
0 & 1 & & \ddots & \\
& & & & 0
\end{array}\right]+\cdots+a_{2 n}\left[\begin{array}{lllll}
0 & & & & \\
& 0 & & 0 & 1 \\
& & \ddots & & \\
& 0 & & 0 & \\
1 & & & 0
\end{array}\right]
$$

$$
x \cdot \cdot
$$

$\operatorname{dim}(W)=n+(n-1)+(n-2)+\cdots+1=\frac{n(n+1)}{2}$.
Note：The dimension of set of skew－symmetric $n \times n$ matrices $M_{\mathrm{n} \times \mathrm{n}}(F)$ is $n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}$ ．

Eg．What are the dimensions of the set of all the 5×5 symmetric matrices and that of all the 5×5 skew－symmetric ones，respectively？
（Sol．）Dimensions of the set of all the 5×5 symmetric matrices $=\frac{5(5+1)}{2}=15$
Dimensions of the set of all the 5×5 skew－symmetric matrices $=\frac{5(5-1)}{2}=10$

