
Chapter 1 Vector Spaces 
 

1-1 Vector Spaces and Linear Combinations 

 

Vector space V: V is a set over a field F if x, yV and a, b F,  ! 

ax+byV. 

Eg. R2 is a vector space. For (a,b), (c,d) R 2, we can check: 

-4(a,b)=(-4a,-4b)R2, 3(a,b)-7(c,d)=(3a-7c,3b-7d)R2, etc. 

 

Eg. Show that the set of all polynomials P(F) with coefficients from F is a vector space. 

(Proof) 
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P(F) , a, bF, (af+bg)(x)=af(x)+bg(x)P(F) 
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 Subspace, W: A subset W of V is subspace of V

Eg. R2 is a subspace of R3. For (a,b,0), (c,d,0)R2, we can check: (a,b,0)+(c,d,0)=(a+c,b+d,0)R2, 

-3(a,b,0)= (-3a,-3b,0)R2, (0,0,0)R2, (a,b,0)+(-a,-b,0)=(0,0,0) and then (-a,-b,0)R2, etc. 

 

Eg. V and {0} are both subspace of V. 

 

Theorem Any intersection of subspaces of a vector space V is a subspace of V. 

Theorem W1 and W2 are subspaces of V, then W1∪W2 is a subspace W1 W 2 or W2 . W1

 

Sum of two sets, S1+S2: S1+S2={x+y: xS1 and yS2}. 

. 

Eg. Let S1={cos(x), cos(2x), cos(3x), ...} and S2={sin(x), sin(2x), sin(3x), ...}, then 

S1+S2={cos(x)+sin(2x), cos(2x)+sin(3x), cos(5x)+sin(x), ...}. 

 

Theorem W1 and W2 are subspace of V, then W1+W2 is the smallest subspace that contains both 

W1 and W2. 

 

Direct Sum, W1♁W2: W1♁W2 if W1∩W2={0} and W=W1+W2

Eg. Fn= W1♁W2, where 
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Eg. P(F)=W1♁W2, where 
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Even function: f(-x)=f(x), Odd function: f(-x)=-f(x) 

Eg. x2, x2-7x10, cos(x) are even functions, but x, 3x-2x3 +5x7, sin(4x) are odd functions. 

 

Theorem W1 and W2 are the set of all even functions and the set of all odd functions in F(C,C), 

respectively. Then F(C,C)=W1♁W2. 

(Proof)  1. W1, W2 are both subspaces of F(C,C) 

2. f(x)W1 ∩W2, f(x)=f(-x)=-f(x) f(x)=0, ∴ W 1 ∩W2={0} 

Let 
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, then h(x)W1 , i(x)W2, ∴ F(C,C)=W1♁W2. 

 

Theorem Let W1 and W2 be two subspaces of a vector space V over F, and then 

V=W1♁W2  x V,   ! x1 W 1 ,  ! x 2W2 such that x=x1+x2. 
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(Proof) Suppose x=x1+x2=y1+y2, 
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1-y1=y2-x2

∵ x1-y1 W 1, y2-x2W2, ∴ x1-y1=y2- 2W1 ∩W2={ x0 y2. } 1=y1, x2=

 

Eg. Let W1, W2, and W3 denote the x-, the y-, and the z-axis, respectively. Then R3= W1♁W2♁W3, 

Wi∩ ={0}. (a,b,c)R)( j
ij

W


 3, (a,b,c)=(a,0,0)+(0,b,0)+(0,0,c), where (a,0,0)W1, (0,b,0)W2, 

(0,0,c)W3. ∴ R3 is uniquely represented as a direct sum of W1, W2, and W3. 

 

Eg. Let W1 and W2 denote the xy- and the yz-planes, respectively. Then R3=W1+W2 and 

W1∩W2={(x,y,z)∣x=z=0}≠{0}. (a,b,c) R3, (a,b,c)=(a,0,0)+(0,b,c)=(a,b,0)+(0,0,c), where (a,0,0), 

(a,b,0)W1 and (0,b,c), (0,0,c) W 2, ∴ R3 can not be uniquely represented as a direct sum of W1 

and W2. 

 

Theorem W is a subspace of V and x1, x2, x3, …, xn are elements of W  ii xa  is an 

element of W for any a

, then 

 over F. 
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(Proof) n=2, it holds by definition. Suppose n=k (k2),  is an element of W, and then n=k+1, 

 is also an element of W by definition. ∴ the proof is complete. 
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Linear combination, y=a1x1+a2x2+…+anxn: It is called the linear combination of x1, x2, …, xn in V, 

where aiF, i n, x S and S is a nonempty subset of V.   

Span(S) (the subspace generated by the elements of S): The subspace consists of all linear 

combinations of elements of S. 

Eg. S={x.y}, then Span(S)={ax+by: a, b F}={3x-2y, -6x+1.5y, 4.3x+7.45y, 2x, -7y, …}. 

 



Theorem (a) S is a nonempty subset of V Span(S) is a subspace of V. (b) Span(S) is the smallest 

subspace of V containing S in the sense that Span(S) is a subset of only subspace of V that 

contains S. 



Eg. ∵ a, b, c, dF, = + + + ,  
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∴ M2×2(R)=Span( ). 
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Eg. ∵ (a,b,c)=a(1,0,0)+b(0,1,0)+c(0,0,1)=
2

cba 
(1,1,0)+

2

bca 
(1,0,1)+

2

acb 
(0,1,1)  a, b, 

cF, ∴ R3=Span({(1,0,0),(0,1,0),(0,0,1)})=Span({(1,1,0),(1,0,1),(0,1,1)}). 

 

Eg. Plot Span( )∪Span( ). [2006 台科大電子所] 
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(Sol.) Span( )=a : a line of x=y, Span( )=b : the y-axis. Span( )∪Span( ): a union of 

x=y and the y-axis. Note: Span( )∪Span( )≠Span( )+Span( )=  is the xy-plane. 
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Eg. Let S={x1,x2, …,xn} be linearly independent set and their coefficients be selected from {0,1}. 

How many elements are there in Span(S)? 

(Sol.) If ySpan(S), y=a1x1+a2x2+…+anxn, , ∴ 2





1

0
ia n elements. 

 

Theorem Span(φ)={0}. 

Theorem A subset W of a vector space V is a subspace of V Span(W)=W. 

(Proof) : ∵ Span(W) is a subspace of V, ∴ W= Span(W) is a subspace of V. ""

 : If Span(W)=W’≠W, W’ is a subspace of V. ""
∵ W’= Span(W) is the smallest subspace of V containing W, ∴ W is a not subspace of V. 

It is contradictory to the statement. ∴ Span(W)=W’=W. 

 

Theorem (a) If S1 and S2 are subspace of V and S1 S 2, then Span(S1)Span(S2). 

 (b) Span (S1∩S2) Span(S 1)∩Span(S2). [台大電研]

(Proof) (a) y= )( 12211 SSpanxaxaxa nn   , aiF and xiS1 
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Theorem If S1 and S2 are subspace of V, then Span(S1∪S2)=Span(S1)+Span(S2). [台大電研] 

(Proof) ∵ , ∴   21
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Suppose Span(S1∪S2)=Span(S1)+Span(S2)+W, where W is independent of S1 and S2, and 

. Let S),( 21 VSSVW   1=S2 W , ∴ Span(S1∪S2)= Span(S1)+ Span(S2) 

 

1-2 Linear Dependence and Linear Independence 

Linear dependence & linear independence: For x1, x2, …, xnS i =0 i  a, f 

t. 
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1, a2, …, an are 

all zeros, then S is linearly independent; otherwise, S is linearly dependen

Eg. (3,2) and (-6,-4) are linearly dependent because of 2(3,2)+1(-6,-4)=0, 

but (1,2) and (3,2) are linearly independent because of only 

0(1,2)+0(3,2)=0 

 
Theorem V is a vector space, S1 S2 V. 

（a） If S1 is linearly dependent, then S2 is also linearly dependent. 

（b） If S2 is linearly independent, then S1 is also linearly independent. 

 

Basis: A basis β for a vector space V is a linearly independent subset of V that generates V. 

Dimension, dim(V): The unique number of elements in each basis for V. 

 

Theorem If V=W1♁W2, then dim(V)=dim(W1)+dim(W2). 

Eg.  R3, we have = + + . Thus { } is the basis of R3 and 

im(R3)=3. 

d a basis of W and dim(W). 

(Sol.

1) 

Basis of W: {(1,0,0,0,-1),(0,1,0,1,0),(0,0,1,0,-1)} and dim(W)=3. 

 

 

Eg. R2, we have =a +b . Thus { , } is the basis of R2 and dim(R2)=2.  
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Eg. For W={(a1,a2,a3,a4,a5)R5: a1+a3+a5=0, a2=a4}, fin

) a1+a3+a5=0. Set a1=r, a3=s, a5=-r-s, and set a2=a4=t. 

(a1,a2,a3,a4,a5)=(r,t,s,t,-r-s)=r(1,0,0,0,-1)+t(0,1,0,1,0)+s(0,0,1,0,-



Eg. Let V=Span{A1,A2,A3,A4}, where A1= 
 , A
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 . Find 

a basis for V. [2005台大電研

(Sol.) aA1+bA2+cA3+dA4= =
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∴ A1, A2, A3, and A4 are linearly dependent. In fact, 0.5A1+0.5A2=A3

We can drop A3, 

a'A1+b’A2+c’A4= = , ∴ A
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1, A2, and A4 are linearly independent

∴ {A1,A2,A4} is the basis of V. 

 

Theorem β={x1,x2, …,xn} is a basis for V  yV can be uniquely expressed as a linear 

combination of vectors in β. 
(Proof) If y= nnnn xbxbxaxa   1111 , 0= nnn xbaxba )()( 111    

∵ β is linearly independent, ∴ nnnn babababa  ,,0 1111   

 

Theorem S is a linearly independent subset of V, and let xV but xS. Then S∪{x} is linearly 

dependent xSpan(S). 
 

Eg. Show that in case β={x1,x2,x3} be a basis in R3, then β’={x1,x1+x2, x1+x2+x3} is also a basis in 

R3. [文化電機轉學考] 

(Proof) Set 0)()( 321321211  xxxaxxaxa … (1). If 0321  aaa , then x1, x1+x2, 

x1+x2+x3 are linearly independent 

0)()()1( 332321321  xaxaaxaaa …(2) 

  

3. 

 , ∴ x


























0

0

0

0

0

0

3

2

1

3

32

321

a

a

a

a

aa

aaa

1, x1+x2, x1+x2+x3 are linearly independent.

∵ dim(R3)=3, ∴ β’ is a basis of R3. 

Another method: , =1≠0, ∴ β’ is also a basis 

of R
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Eg. Determine whether the given set of vectors is linearly independent? [交大電信所] 

(a) {(1,0,0),(1,1,0),(1,1,1)} in R3.  

(b) {(1,-2,1),(3,-5,2),(2,-3,6),(1,2,1)} in R3. 

(c) {(1,-3,2),(2,-5,3),(4,0,1)} in R3. 

(Sol.) (a) =1≠0, ∴ Linearly independent. (b) 4 vectors in R)
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3, ∴ Linearly dependent. 

(c) , ∴ Linearly independent. 05640365)
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Eg. Are (x-1)(x-2) and |x-1|．(x-2) linearly independent? [1990 中央土木所] 

(Sol.) 1. If 1<x, 212121 0)2)(1()2)(1()2(1)2)(1( ccxxcxxcxxcxxc   

2. If x<1, 212121 0)2)(1()2)(1()2(1)2)(1( ccxxcxxcxxcxxc   

(1), (2) hold c1=c2=0, ∴ Linearly independent. 

 

Eg. Given a matrix A=  and a set of matrices S={ , , , }. 

Determine if S is a linearly independent subset of M
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2×2, the vector space of all 2×2 matrices? 

Represent the matrix A as a linear combination of the vectors in the set S. What are the 

corresponding coefficients? [台大電研] 

(Sol.) Let a +b +c +d = a=b=c=d=0 
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∴ S={ , , , } is a linearly independent subset of M
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Let = e +f +g +h  
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Eg. W1 and W2 are finite-dimensional subspace of V, and dim(W1)=m, dim(W2)=n (m n), then 

dim(W



1∩W2)≦n and dim(W1+W2)m+n. [2010 台大電研]

(Proof) 1. W1∩W2 W2, ∴ dim(W1∩W2)≦dim(W2)=n

2. dim(W1+W2)=dim(W1)+dim(W2)-dim(W1∩W2), ∵ dim(W1∩W2)≧0, ∴ dim(W1+W )m+n 

 



Eg. Let v be the span of the set of vectors S={(1,-1,3),(0,2,1),(1,3,5)}.(a) What is the dimension of ν? 

(b) Can we use S as a basis of v? [2006台科大電研] 

(Sol.) (a) Let a(1,-1,3)+b(0,2,1)+c(1,3,5)=(0,0,0) a=-1, b=-2, c=1, ∴ S={(1,-1,3),(0,2,1),(1,3,5)} is 

linearly dependent.  ∵ S’={(0,2,1),(1,3,5)} is linearly independent, ∴ dim(v)=2. 



(b) No! 

 

Transpose of a m×n matrix M, Mt: An n×m matrix Mt, in which (Mt)ij=Mji. 

Eg. M= , then M
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In Matlab language, we can use the following instructions to obtain the transpose of a matrix: 

>>A=[2,5;0,3] 

A = 

     2     5 

     0     3 

 

>>C=A' 

C = 

     2     0 

     5     3 

 

Symmetric matrix: M=Mt; that is, Mij=Mji. 

Skew symmetric matrix: M=-Mt; that is, Mij=-Mji,  i≠j, and Mij=0,  i=j. 

Eg. A=  is a symmetric matrix. B=  is a skew symmetric matrix. 
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Eg. Show that the set of all square matrices can be decomposed into the direct sum of the set of 

the symmetric matrices and that of the skew-symmetric ones. [文化電機轉學考] 

(Proof)  1. The set of the symmetric matrices W1 and the set of the skew-symmetric matrices W2 are 

both subspaces of Mn×n(F) 

2. AW1 ∩W2, A=At=-At A =0, ∴ W  ∩W ={0} 1 2  

Let 
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, then BW1 , CW2, ∴ Mn×n(F)=W1♁W2. 

 



Eg. The set of symmetric n×n matrices Mn×n(F) is a subspace W. Find a basis for W and dim(W). 

[文化電機轉學考] 

(Sol.) , where a
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Note: The dimension of set of skew-symmetric n×n matrices Mn×n(F) is 
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Eg. What are the dimensions of the set of all the 5×5 symmetric matrices and that of all the 5×5 

skew-symmetric ones, respectively? 

(Sol.) Dimensions of the set of all the 5×5 symmetric matrices=
2

)15(5  =15 

Dimensions of the set of all the 5×5 skew-symmetric matrices=
2

)15(5  =10 


