Chapter 2 Monte Carlo Method

2-1 Random Numbers

Modular multiplicative method: Choose $x_0 < N$ and γ . Set $x_{n+1} = (\gamma x_n) \mod (N) \Rightarrow x_1, x_2, ..., x_n, ...$ are approximately uniform distribution on [0,N-1]

Eg. Choose $x_0=1$, $\gamma=13$, $N=100 \Rightarrow 1$, 13, 69, 97, 61, 93, 9, 17, 21, 73, 49, 37, 81, 53, 89, 57, 41, 33, 29, 77, 1, 13...

Note: In fact, the sequence has a period (=20) in this case. Therefore, these numbers are not true random numbers.

Eg. By the previous problem, generate random numbers on [0,1], [-0.5,0.5], and [1,2], respectively.

(Sol.) 1.
$$x_n \times \frac{1}{100} \Rightarrow 0.01, 0.13, 0.69, 0.97, \dots$$

2.
$$(x_n - 50) \times \frac{1}{100} \Rightarrow -0.49, -0.37, 0.19, 0.47, \dots$$

3.
$$x_n \times \frac{1}{100} + 1 \Rightarrow 1.01, 1.13, 1.69, 1.97, \dots$$

Failure of modular multiplicative method:

Eg. Choose $x_0=5$, $\gamma=5$, $N=10 \Rightarrow x_1=5$, $x_2=5$, $x_3=5$, ...: Not random numbers!

Other algorithms to obtain random numbers:

Eg. π =3.141592654.... \Rightarrow x_0 =314, x_1 =159, x_2 =265, Or, x_0 =31, x_1 =41, x_2 =59, ..., etc.

Some fortune-teller websites might not provide true random numbers. It is necessary to modify the way of generating random numbers.

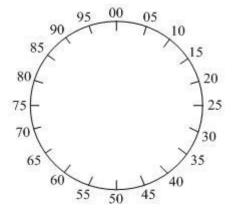
2-2 Integration by the Monte Carlo Method

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{M} \sum_{i=1}^{M} f(x_i), \text{ where } x_i \text{ is uniformly distributed on } [a,b]$$

Eg.
$$\int_0^1 x dx = ?$$
, $\int_0^1 x^2 dx = ?$

(Sol.) Choose M=5 and $x_i=0.01, 0.13, 0.69, 0.97, 0.61, then$

$$0.5 = \int_0^1 x dx \approx \frac{1}{5} [0.01 + 0.13 + 0.69 + 0.97 + 0.61] = 0.48$$


$$\frac{1}{3} = \int_0^1 x^2 dx \approx \frac{1}{5} [0.01^2 + 0.13^2 + 0.69^2 + 0.97^2 + 0.61^2] = 0.36$$

Problem:
$$\rho \int_0^{\pi} \sin x dx = ?$$
, $\int_0^1 \int_0^1 \int_0^1 \int_0^1 \int_0^1 \frac{dA dB dC dD dE dF}{1 + A + B + C + D + E + F} = ?$
 $\int_0^{\infty} \int_0^{\infty} e^{-x^2 - y^2} dx dy = ?$ (Hint: $\int_0^M \int_0^M e^{-x^2 - y^2} dx dy$ as $M \to \infty$)

2-3 Simulation by Monte Carlo Method

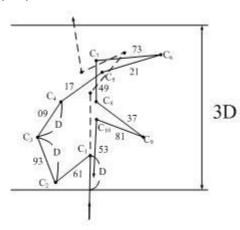
Eg. Suppose some neutrons are injected into an aluminum wall. Each neutron traverses *D* before it ran into an atom. And the thickness of the wall is 3*D*. Compute the probability of neutrons penetration through the wall. (Assume that each neutron can run into something only 10 times.)

(Sol.)

We divide the circle into N sections. And we choose the random numbers x_1, x_2, x_3, \dots on [0, 1]

N]. Test whether $D+D\cdot\sum_{i\leq 10}\cos(\frac{2x_i\pi}{N})>3D$? If the

answer is "Yes", this neutron can penetrate through the wall.


For simplicity, we set *N*=100 and have random numbers: 01, 13, 69, 97, 61, 93, 09, 17, 21, 73, 49, 37, 81, 53, 89, 57, ...

 \rightarrow 61, 93, 9, 17, 21, 73, 49, 37, 81, 53: It can not penetrate through the wall.

 \rightarrow 01, 13, 69, 97: After 4 impacts, it penetrates through the wall.

:

You can simulate many cases in this problem and obtain the probability.

Eg. An unfair coin is tossed 4 times. Suppose it has probability 0.3 to appear side of head each time. Calculate the probabilities that it appears the side 0, 1, 2, 3, and 4 times.

(Sol.) **Exact solution:** 0 head: $C_0^4(0.3)^0(0.7)^4 = 0.2401$,

1 head: $C_1^4(0.3)^1(0.7)^3 = 0.4116$, 2 heads: $C_2^4(0.3)^2(0.7)^2 = 0.2646$,

3 heads: $C_3^4(0.3)^3(0.7)^1=0.0756$, 4 heads: $C_4^4(0.3)^4(0.7)^0=0.0081$

Simulation by the Monte Carlo method: Choose random numbers like: 0.01, 0.13, 0.69, 0.97, 0.61, 0.93, 0.09, 0.17, ... (You have many candidates)

In case of $0 < x_i < 0.3$: head, and $0.3 < x_i < 1$: the other side

 \Rightarrow 0 head: (0.69, 0.97, 0.61, 0.93), (0.81, 0.53, 0.89, 0.57), ...

1 head: (0.13, 0.69, 0.97, 0.61), (0.13, 0.69, 0.97, 0.61), ...

2 heads: (0.01, 0.13, 0.69, 0.97), (0.61, 0.93, 0.09, 0.17), ...

3 heads: (0.09, 0.17, 0.21, 0.73), ...

4 heads: ...

You can simulate many cases in this problem like this to obtain the results.

附錄—棒球統計分析作業

統計公式

卡方(χ^2)檢定: $\Diamond \chi_{n-1}^2$ 為 n-1 階自由度之卡方分佈之 95%判別標準數(可由查表得知),而 n 為兩數列 $\{p_i\}$ 與 $\{q_i\}$ 之個數,要判別此二數列是否接近的方式為:當 $\sum_{i=1}^n \frac{(p_i-q_i)^2}{q_i} \leq \chi_{n-1}^2$ 時,數列 $\{p_i\}$ 與數列 $\{q_i\}$ 便可視為十分接近,否則便視為差異很大。

條件機率:在 A 條件之下,會出現 B 結果的機率為 $P(B|A) = \frac{P(A,B)}{P(A)}$ 。而 P(A)是只出現 A 的機率, P(A,B)是同時出現 A 與 B 的機率。

相關係數:數列 $\{x_i\}$ 與數列 $\{y_i\}$ 之相關係數公式為

$$r(x,y) = \frac{(\sum_{i=1}^{n} x_i y_i) - n\overline{x}\overline{y}}{\sqrt{[(\sum_{i=1}^{n} x_i^2) - n\overline{x}] \cdot [(\sum_{i=1}^{n} y_i^2) - n\overline{y}]}} , 此處 \overline{x} 代表 \{x_i\}$$
的平均值, \overline{y} 代表 $\{y_i\}$ 的平均

值。如果此相關係數為正值,代表數列 $\{x_i\}$ 與數列 $\{y_i\}$ 為正相關;如果此係數為負值,代表數列 $\{x_i\}$ 與數列 $\{y_i\}$ 為負相關。

一、職棒投手對每位打擊者第一球投球習慣的機率統計

中華職棒

A.本國籍打	好球而打者未揮棒		打者揮棒落空		球被打者擊中		壞球或觸身球	
者	直球	變化球	直球	變化球	直球	變化球	直球	變化球
本國投手								
日籍投手								
西方籍投手								

B. 日本籍打	好球而打	好球而打者未揮棒		打者揮棒落空		球被打者擊中		壞球或觸身球	
者	直球	變化球	直球	變化球	直球	變化球	直球	變化球	
本國投手									
日籍投手									
西方籍投手									

C.西方籍打	好球而打者未揮棒		打者揮棒落空		球被打者擊中		壞球或觸身球	
者	直球	變化球	直球	變化球	直球	變化球	直球	變化球
本國投手								
日籍投手								
西方籍投手								

(註:界外球、擦棒球均視為被擊中)

比較:

日本職棒

	好球而打	者未揮棒	打者揮	打者揮棒落空		球被打者擊中		壞球或觸身球	
	直球	變化球	直球	變化球	直球	變化球	直球	變化球	
日本投手									
西方籍投手									

美國職棒

	好球而打	者未揮棒	打者揮棒落空		球被打者擊中		壞球或觸身球	
	直球	變化球	直球	變化球	直球	變化球	直球	變化球
美洲投手								
日本投手								

檢定分析:

- 1. 我國投手在中華職棒,與日本投手在日本職棒,及美洲投手在美國職棒,其對每位打擊者第一球之投球習慣是否有明顯差異(用卡方檢定)?那一國職棒投手較有先搶好球數的習慣?
- 2. 我國職棒投手對本國籍、日籍與西方籍打擊者所投的第一球之投球習慣是否有明顯差異(用 卡方檢定)?他們在那一國打擊者會有先搶好球數的習慣?
- 3. 日本投手在日本、美國與中華職棒,其對每位打擊者第一球之投球習慣是否有明顯差異(用 卡方檢定)?他們在那一國職棒投球有先搶好球數的習慣?
- 4. 美洲投手在美國、日本與中華職棒,其對每位打擊者第一球之投球習慣是否有明顯差異(用 卡方檢定)?他們在那一國職棒投球有先搶好球數的習慣? 交叉分析:
- 5. 我國職棒打擊者會揮棒打投手所投的第一球之機率為多少?其中,打中的機率為多少?而直 球被打中的機率為多少?變化球被打中的機率為多少?(用條件機率公式)
- 6. 我國職棒打擊者對於本國籍、日籍與西方籍投手所投的第一球,會揮棒打擊的機率各為多

少?其中,會打中的機率為多少?那一國籍投手所投的第一球最容易被打中?(用條件機率公式)

7. 我國職棒投手對打擊者所投的第一球是直球的機率為多少?是變化球的機率為多少?

二、 我國職棒投手對打擊者兩好三壞後第一球投球習慣的機率統計

中華職棒

A	好球而打	者未揮棒	打者揮棒落空		球被打者擊中		壞球或觸身球	
	直球	變化球	直球	變化球	直球	變化球	直球	變化球
本國投手								
日籍投手								
西方籍投手								

В	好球而打	者未揮棒	打者揮棒落空		球被打	者擊中	壞球或觸身球	
	直球	變化球	直球	變化球	直球	變化球	直球	變化球
本國投手								
日籍投手								
西方籍投手								

С	好球而打	者未揮棒	打者揮	打者揮棒落空		者擊中	壞球或觸身球	
	直球	變化球	直球	變化球	直球	變化球	直球	變化球
本國投手								
日籍投手								
西方籍投手								

比較:

日本職棒

	好球而打	者未揮棒	打者揮	打者揮棒落空		球被打者擊中		觸身球
	直球	變化球	直球	變化球	直球	變化球	直球	變化球
日本投手								
西方投手								

美國職棒

	好球而打	者未揮棒	打者揮	棒落空	球被打者擊中		壞球或觸身球	
	直球	變化球	直球	變化球	直球	變化球	直球	變化球
美洲投手								
日本投手								

檢定分析:

1. 我國投手在中華職棒,與日本投手在日本職棒,及美洲投手在美國職棒,其對打擊者兩好三 壞後之投球習慣是否有明顯差異(用卡方檢定)?那國投手較喜歡以變化球對決?那國投手較 喜歡以直球對決?

交叉分析:

- 2. 我國職棒打擊者對於所有投手兩好三壞後所投的第一球,會揮棒打擊的機率為多少?其中, 打中的機率為多少?而投手兩好三壞後所投的變化球被擊中的機率是多少?直球被擊中的 機率是多少?(用條件機率公式)
- 3. 我國職棒打擊者對於本國籍投手、日籍投手、西方投手兩好三壞後所投的第一球,揮棒打擊 的機率各是多少?

三、 我國職棒內野手失誤情況的機率統計

中華職棒(至少觀察本國內野手失誤20人次,外籍內野手可從缺)

	接球時失調	誤		傳球時失誤		
			被外在因素(跑 壘、燈光等)干擾		傳球時臂力不夠 造成球落地彈跳	球傳到時隊友尚 未就定位
本國內野手						
外籍內野手						

比較:

日本職棒(至少觀察失誤10人次)

	接球時失詞	洖		傳球時失誤		
	球進入手套又跑 出		被外在因素(跑 壘、燈光等)干擾		傳球時臂力不夠 造成球落地彈跳	球傳到時隊友尚 未就定位
內野手						

美國職棒(至少觀察失誤10人次))

	接球時失	誤		傳球時失誤				
	球進入手套又跑 出		被外在因素(跑 壘、燈光等)干擾		傳球時臂力不夠 造成球落地彈跳	球傳到時隊友尚 未就定位		
内野手								

檢定分析:

1. 中華職棒、日本職棒及美國職棒,其內野手失誤情況是否有明顯差異(用卡方檢定)?那一國職棒內野手接球失誤的機率較大?那一國職棒內野手傳球失誤的機率較大?那一國職棒內野手傳接球時默契最差?

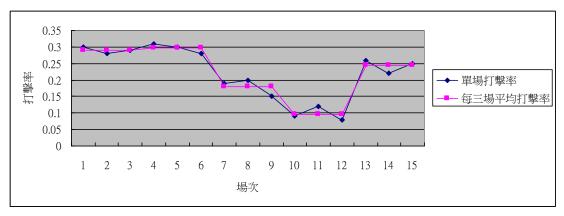
四、描繪我國職棒球員打擊情況的統計曲線

中華職棒單場打擊率表

場次	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
打擊率																					
全壘打數																					
三振數																					

將上述單場打擊表現表製作 10 份,分別記錄這 10 位先發打擊者,然後以每 3 場比賽為原則,分別對這 10 位先發打擊者製作下列每週(每三場)打擊表現表:

	1	2	3	4	5	6	7
每3場打擊率							


圖形與相關分析:

- 1. 繪製每位選手之單場打擊率與每週(每三場)打擊率的折線圖,觀察二者是否有交點?如果單場打擊率折線圖下跌而跌至每週(每三場)打擊率折線圖以下(黑色交叉),代表此選手打擊可能即將陷入低潮一段時間;如果單場打擊率折線圖上升而生高至每週(每三場)打擊率折線圖以上(黃金交叉),代表此選手打擊可能即將達到高峰一段時間。
- 2. 利用以上幾種數據,繪製每位選手之單場打擊表現圖,計算彼此間的相關係數。觀察那些因素之間為正相關?那些因素之間為負相關?是否全壘打多時,三振也多?是否打擊率高時,三振率會降低?
- 3. 同上,繪製每位選手之每週(每三場)打擊表現圖,計算彼此間的相關係數。觀察那些因素之間為正相關?那些因素之間為負相關?其相關係數與單場打擊表現所算出來的是否接近?

Eg. 根據下表,繪出某打擊者連續 15 場比賽之單場打擊率(藍色)與每三場平均打擊率(紅色)折線 圖如下:

	1	2	3	4	5	6	7	8
單場打擊率	0.3	0.28	0.29	0.31	0.3	0.28	0.19	0.2
每三場平均 打擊率	0.29	0.29	0.29	0.296 67	0.296 67	0.296 67	0.18	0.18

	9	10	11	12	13	14	15
單場打擊率	0.15	0.09	0.12	0.08	0.26	0.22	0.25
每三場平均打 擊率	0.18	0.0966 7	0.0966 7	0.0966 7	0.2433	0.2433	0.2433

由圖上可知:在第 8、9 場比賽時,出現第二次「黑色(死亡)交叉」,此時「單場打擊率」已第二次跌破「每三場平均打擊率」,代表此打擊者陷入低潮期。而在第 12、13 場比賽時,出現第二次「黃金交叉」,此時「單場打擊率」已第二次升破「每三場平均打擊率」,代表此打擊者走出低潮期,打擊開始發威。