Chapter 1 Electromagnetic Field Theory

1-1 Electric Fields and Electric Dipoles

Gauss's law of $\vec{E}: \oiint_{s} \vec{E} \cdot d \vec{S}=\frac{Q}{\varepsilon}=\frac{1}{\varepsilon} \iiint \rho d v^{\prime}$
$\xrightarrow{\substack{\text { divergence } \\ \text { theorm }}} \iiint_{v^{\prime}} \nabla \cdot \vec{E} d \nu^{\prime}=\frac{1}{\varepsilon} \iiint_{v^{\prime}} \rho d v^{\prime} \Rightarrow \nabla \cdot \vec{E}=\frac{\rho}{\varepsilon}$ and $\varepsilon_{0}=\frac{1}{36 \pi} \times 10^{-9} \quad(\mathrm{~F} / \mathrm{m})$ in the free space.
For q at \vec{R}^{\prime}, field point at $\vec{R} \Rightarrow \vec{E}=\frac{q \hat{a}_{R R}}{4 \pi \varepsilon\left|\vec{R}-\overrightarrow{R^{\prime}}\right|^{2}}=\frac{q\left(\vec{R}-\vec{R}^{\prime}\right)}{4 \pi \varepsilon\left|\vec{R}-\vec{R}^{\prime}\right|^{3}}$ and $\hat{a}_{R R}=\frac{\vec{R}-\vec{R}^{\prime}}{\left|\vec{R}-\vec{R}^{\prime}\right|}$.
\vec{E} due to a system of discrete charges: $\vec{E}=\frac{1}{4 \pi \varepsilon} \sum_{k=1}^{n} \frac{q_{k}\left(\vec{R}-\overrightarrow{R_{k}^{\prime}}\right)}{\left|\vec{R}-{\overrightarrow{R_{k}^{\prime}}}_{k}\right|^{3}}$
Volume source $\rho \Rightarrow \vec{E}=\frac{1}{4 \pi \varepsilon} \iiint_{v^{\prime}} \hat{a_{R}} \frac{\rho}{R^{2}} d \nu^{\prime}=\frac{1}{4 \pi \varepsilon} \iiint_{v^{\prime}} \frac{\rho \vec{R}}{|\vec{R}|^{3}} d \nu^{\prime}$
Surface source $\rho_{s} \Rightarrow \vec{E}=\frac{1}{4 \pi \varepsilon} \iint_{s^{\prime}} \hat{a_{R}} \frac{\rho_{s}}{R^{2}} d S^{\prime} \quad$ Line source $\rho_{l} \Rightarrow \vec{E}=\frac{1}{4 \pi \varepsilon} \int_{l} \hat{a_{R}} \frac{\rho_{l}}{R^{2}} d l^{\prime}$

Eg. Show that Coulomb's law $\vec{F}=\hat{a}_{R} \frac{q_{1} q_{2}}{4 \pi \varepsilon R^{2}}=\frac{q_{1} q_{2} \vec{R}}{4 \pi \varepsilon R^{3}}$, where $\hat{a}_{R}=\frac{\vec{R}}{R}, \quad R=|\vec{R}|$. (Proof) $\because \vec{F}=q_{2} \vec{E}$ and $\oiint \vec{E} \cdot d \vec{S}=\frac{q_{1}}{\varepsilon}=4 \pi r^{2} E, \vec{E}=\hat{a}_{R} \frac{q_{1}}{4 \pi \varepsilon R^{2}}=\frac{q_{1} \vec{R}}{4 \pi \varepsilon R^{3}}$

$$
\therefore \vec{F}=\hat{a}_{R} \frac{q_{1} q_{2}}{4 \pi \varepsilon R^{2}}
$$

Eg. Determine the electric field intensity of an infinitely long line charge of a uniform density ρ_{l} in air.
(Sol.)

$$
\begin{aligned}
& \oiint_{s} \vec{E} \cdot d \vec{S}=\int_{0}^{L} \int_{0}^{2 \pi} E r d \phi d z=2 \pi r L E \\
& 2 \pi r L E=\frac{\rho_{l} L}{\varepsilon_{0}}, \vec{E}=\hat{a_{r}} \frac{\rho_{l}}{2 \pi \varepsilon_{0} r}
\end{aligned}
$$

Eg．Determine the electric field intensity of an infinite planar charge with a uniform surface charge density ρ_{s} ．
（Sol．）$\oint_{s} \vec{E} \cdot d \vec{S}=2 E S=2 E A, 2 E A=\frac{\rho_{s} A}{\varepsilon_{0}}$

$$
\Rightarrow \vec{E}= \begin{cases}=\hat{z} \frac{\rho_{s}}{2 \varepsilon_{0}}, & z>0 \\ =-\hat{z} \frac{\rho_{s}}{2 \varepsilon_{0}}, & z<0\end{cases}
$$

Eg．A line charge of uniform density ρ_{l} in free space forms a semicircle of radius b ．Determine the magnitude and direction of the electric field intensity at the center of the semicircle．［高考］
（Sol．）$d \vec{E}_{y}=-\frac{\rho_{l}(b d \phi)}{4 \pi \varepsilon_{0} b^{2}} \cdot \sin \phi, \vec{E}=\hat{y} E_{y}=-\hat{y} \frac{\rho_{l}}{4 \pi \varepsilon_{0} b} \int_{0}^{\pi} \sin \phi d \phi=-\hat{y} \frac{\rho_{l}}{2 \pi \varepsilon_{0} b}$

Eg．Determine the electric field caused by spherical cloud of electrons with a volume charge density $\boldsymbol{\rho}=-\boldsymbol{\rho}_{\mathbf{0}}$ for $0 \leq R \leq b$（both $\boldsymbol{\rho}_{\mathbf{0}}$ and \boldsymbol{b} are positive）and $\boldsymbol{\rho}=\mathbf{0}$ for $\boldsymbol{R}>\boldsymbol{b}$ ．［交大電子物理所］
（Sol．）
（a）$R \geq b$

$$
Q=-\rho_{0} \frac{4 \pi}{3} b^{3}, \quad \vec{E}=\hat{a}_{R} \frac{Q}{4 \pi \varepsilon_{0} R^{2}}=-\hat{a_{R}} \frac{\rho_{0} b^{3}}{3 \varepsilon_{0} R^{2}}
$$

（b） $0 \leq R \leq b$

$\vec{E}=\hat{a_{R}} E, d \vec{S}=\hat{a_{R}} d S, \oint_{s_{i}} \vec{E} \cdot d \vec{S}=E \int_{S_{i}} d S=E 4 \pi R^{2}$
$Q=\iiint_{v} \rho d v=-\rho_{0} \iiint_{v} d v=-\rho_{0} \frac{4 \pi}{3} R^{3}, \quad \vec{E}=-\hat{a_{R}} \frac{\rho_{0} R}{3 \varepsilon_{0}}$

Eg．A total charge Q is put on a thin spherical shell of radius b ．Determine the electrical field intensity at an arbitrary point inside the shell．［台大電硏］ （Sol．）

$$
\begin{aligned}
& \rho_{s}=\frac{Q}{4 \pi b^{2}}, d E=\frac{\rho_{s}}{4 \pi \varepsilon_{0}}\left(\frac{d S_{1}}{r_{1}^{2}}-\frac{d S_{2}}{r_{2}^{2}}\right) \\
& d \Omega=\frac{d S_{1}}{r_{1}{ }^{2}} \cos \alpha=\frac{d S_{2}}{r_{2}^{2}} \cos \alpha, d E=\frac{\rho_{s}}{4 \pi \varepsilon_{0}}\left(\frac{d \Omega}{\cos \alpha}-\frac{d \Omega}{\cos \alpha}\right)=0
\end{aligned}
$$

Electric dipole: A pair of equal but opposite charges with separation.

$$
\begin{aligned}
& \left|\vec{R}-\frac{\vec{d}}{2}\right|^{-3}=\left[\left(\vec{R}-\frac{\vec{d}}{2}\right) \cdot\left(\vec{R}-\frac{\vec{d}}{2}\right)\right]^{-3 / 2}=\left[R^{2}-R \cdot d+\frac{d^{2}}{4}\right]^{-3 / 2} \\
& \cong R^{-3}\left[1-\frac{\vec{R} \cdot \vec{d}}{R^{2}}\right]^{-3 / 2} \cong R^{-3}\left[1+\frac{3}{2} \frac{\vec{R} \cdot \vec{d}}{R^{2}}\right] \\
& \left|\vec{R}+\frac{\vec{d}}{2}\right|^{-3} \cong R^{-3}\left[1-\frac{3}{2} \frac{\vec{R} \cdot \vec{d}}{R^{2}}\right] \\
& \Rightarrow \vec{E}=\frac{q}{4 \pi \varepsilon}\left\{\frac{\vec{R}-\frac{\vec{d}}{2}}{\left|\vec{R}-\frac{\vec{d}}{2}\right|^{3}}-\frac{\vec{R}+\frac{\vec{d}}{2}}{\left|\vec{R}+\frac{\vec{d}}{2}\right|^{3}}\right\} \cong \frac{q}{4 \pi \varepsilon R^{3}}\left[3 \frac{\vec{R} \cdot \vec{d}}{R^{2}} \vec{R}-\vec{d}\right]=\frac{1}{4 \pi \varepsilon R^{3}}\left[3 \frac{\vec{R} \cdot \vec{P}}{R^{2}} \vec{R}-\vec{P}\right] \\
& \left(\begin{array}{l}
\vec{p}=\hat{z} p=p\left(\hat{a_{R}} \cos \theta-\hat{a_{\theta}} \sin \theta\right) \quad \vec{R} \cdot \vec{p}=p \cos \theta
\end{array}\right) \\
& \Rightarrow \vec{E}=\frac{p}{4 \pi \varepsilon R^{3}}\left(\hat{a_{R}} 2 \cos \theta+\hat{a_{\theta}} \sin \theta\right)
\end{aligned}
$$

Eg. At what value of $\boldsymbol{\theta}$ does the electric field intensity of a \boldsymbol{z}-directed dipole have no \boldsymbol{z}-component.
(Sol.) $\vec{E}=\frac{\vec{p}}{4 \pi \varepsilon_{0} R^{3}}\left(\hat{a}_{r} 2 \cos \theta+\hat{a_{\theta}} \sin \theta\right), \hat{z}=\hat{a_{r}} \cos \theta-\hat{a_{\theta}} \sin \theta$
No z-component $\Rightarrow 2 \cos \theta \cdot \cos \theta-\sin \theta \cdot \sin \theta=0 \Rightarrow \tan ^{2} \theta=2 \Rightarrow \theta=54.7^{\circ}$ or 125.3°

1-2 Static Electric Potentials

$$
\vec{E}=-\nabla V \quad \Rightarrow V_{2}-V_{1}=-\int_{p_{1}}^{p_{2}} \vec{E} \cdot d \vec{l} \text { and } \nabla^{2} V=-\rho / \varepsilon
$$

Electric potential due to a point charge:

$$
\begin{aligned}
& V=-\int_{\infty}^{R} \hat{a_{R}} \frac{q}{4 \pi \varepsilon R^{2}} \cdot \hat{a_{R}} d R=\frac{q}{4 \pi \varepsilon R} \\
& V_{21}=V_{p_{2}}-V_{p_{1}}=\frac{q}{4 \pi \varepsilon}\left(\frac{1}{R_{2}}-\frac{1}{R_{1}}\right)
\end{aligned}
$$

Electric potential due to discrete charges:

$$
V=\frac{1}{4 \pi \varepsilon} \sum_{k=1}^{n} \frac{q_{k}}{\left|R-R_{k}^{\prime}\right|}
$$

Electric potential due to an electric dipole:

$$
V=\frac{q}{4 \pi \varepsilon}\left(\frac{1}{R_{+}}-\frac{1}{R_{-}}\right)
$$

If $d \ll R$, we have

$$
\begin{aligned}
& \text { and } \frac{1}{R_{+}} \cong\left(R-\frac{d}{2} \cos \theta\right)^{-1} \cong R^{-1}\left(1+\frac{d}{2 R} \cos \theta\right) \\
& V=\frac{q d \cos \theta}{4 \pi \varepsilon R^{2}}, \quad \vec{p}=q \vec{d} \Rightarrow V=\frac{\vec{p} \cdot \hat{a_{R}}}{4 \pi \varepsilon R^{2}} \quad(V) \\
& \Rightarrow \vec{E}=-\nabla V=-\hat{a_{R}} \frac{\partial V}{\partial R}-\hat{a_{\theta}} \frac{\partial V}{\partial \theta}=\frac{p}{4 \pi \varepsilon R^{3}}\left(\hat{a_{R}} 2 \cos \theta+\hat{a_{\theta}} \sin \theta\right)
\end{aligned}
$$

Scalar electric potential due to various charge distributions:
Volume source $\rho \Rightarrow V=\frac{1}{4 \pi \varepsilon} \iiint_{v^{\prime}} \frac{\rho}{R} d v^{\prime}$.
Surface source $\rho_{s} \Rightarrow V=\frac{1}{4 \pi \varepsilon} \iint_{s^{\prime}} \frac{\rho_{s}}{R} d S^{\prime}$
Line source $\rho_{l} \Rightarrow V=\frac{1}{4 \pi \varepsilon} \int \frac{\rho_{l}}{R} d l^{\prime}$
Note: $1 . V$ is a scalar, but \vec{E} is a vector.
2. $\vec{E}=-\nabla V$ is valid only in the static EM field.

Eg. Obtain a formula for electrical field intensity along the axis of a uniform line charge of length L. The uniform line-charge density is $\rho_{l \cdot}$ [高考] (Sol.) $R=z-z^{\prime}, \quad z>\frac{L}{2}$

$$
\begin{aligned}
V & =\frac{\rho_{l}}{4 \pi \varepsilon_{0}} \int_{-L / 2}^{L / 2} \frac{d z^{\prime}}{z-z^{\prime}}=\frac{\rho_{l}}{4 \pi \varepsilon_{0}} \ln \left[\frac{z+(L / 2)}{z-(L / 2)}\right], \quad z>\frac{L}{2} \\
\vec{E} & =-\hat{z} \frac{d V}{d z}=\hat{z} \frac{\rho_{l} L}{4 \pi \varepsilon_{0}\left[z^{2}-(L / 2)^{2}\right]}, \quad z>\frac{L}{2}
\end{aligned}
$$

Eg. A finite line charge of length L carrying uniform line charge density ρ_{l} is coincident with the x-axis. Determine V and \vec{E} in the plane bisecting the line charge.
(Sol.) $V=\int_{-L / 2}^{L / 2} \frac{\rho_{l} d x}{4 \pi \varepsilon_{0} \sqrt{x^{2}+y^{2}}}=\frac{\rho_{l}}{2 \pi \varepsilon_{0}}\left\{\ln \left[\sqrt{\left(\frac{L}{2}\right)^{2}+y^{2}}+\frac{L}{2}\right]-\ln y\right\}$
and $\vec{E}=-\nabla V=\hat{y} \frac{\rho_{l}}{2 \pi \varepsilon_{0} y}\left[\frac{L / 2}{\sqrt{(L / 2)^{2}+y^{2}}}\right]$

Eg. A charge is distributed uniformly over an $\boldsymbol{L} \times \boldsymbol{L}$ square plate. Determine \boldsymbol{V} and \vec{E} at a point on the axis perpendicular to the plate and through its center.
(Sol.) $\rho_{s}=\frac{Q}{L^{2}}, y^{2} \rightarrow y^{2}+z^{2}, \quad V=\frac{\rho_{s}}{2 \pi \varepsilon_{0}} \int_{-L / 2}^{L / 2}\left\{\ln \left[\sqrt{\left(\frac{L}{2}\right)^{2}+y^{2}+z^{2}}+\frac{L}{2}\right]-\ln \sqrt{y^{2}+z^{2}}\right\} d y$
$=\frac{Q}{\pi \varepsilon_{0} L^{2}}\left\{\frac{L}{2} \ln \left[\frac{\sqrt{2\left(\frac{L}{2}\right)^{2}+z^{2}}+\frac{L}{2}}{\sqrt{2\left(\frac{L}{2}\right)^{2}+z^{2}}-\frac{L}{2}}\right]-z \cdot \tan ^{-1}\left[\frac{\left(\frac{L}{2}\right)^{2}}{z \sqrt{2\left(\frac{L}{2}\right)^{2}+z^{2}}}\right]\right\}$
$\vec{E}=-\nabla V=\hat{z} \frac{Q}{\pi \varepsilon_{0} L^{2}} \tan ^{-1}\left[\frac{\left(\frac{L}{2}\right)^{2}}{z \sqrt{2\left(\frac{L}{2}\right)^{2}+z^{2}}}\right]$

Eg. A positive point charge Q is at the center of a spherical conducting shell of an inner radius $\boldsymbol{R}_{\mathbf{i}}$ and an outer radius $\boldsymbol{R}_{\mathbf{0}}$. Determine \vec{E} and V as functions of the radial distance R. [高考]
(Sol.) $R>R_{0}, \oiint_{s} \vec{E} \cdot d \vec{S}=E 4 \pi R^{2}=\frac{Q}{\varepsilon_{0}}, \quad E=\frac{Q}{4 \pi \varepsilon_{0} R^{2}}, \quad V=-\int_{\infty}^{R} E d R=\frac{Q}{4 \pi \varepsilon_{0} R}$
$R_{\mathrm{i}}<R<R_{\mathrm{o}}, \quad E=0, \quad V=\left.V\right|_{R=R_{0}}=\frac{Q}{4 \pi \varepsilon_{0} R_{o}}$
$R<R_{\mathrm{i}}, \quad E=\frac{Q}{4 \pi \varepsilon_{0} R^{2}}, \quad V=-\int E d R+C=\frac{Q}{4 \pi \varepsilon_{0} R}+C$
$C=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{o}}-\frac{1}{R_{i}}\right) \Rightarrow V=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R}+\frac{1}{R_{o}}-\frac{1}{R_{i}}\right)$

Eg. A charge Q is distributed uniformly over the wall of a circular tube of radius \boldsymbol{b} and height \boldsymbol{h}. Determine \vec{E} and V on its axis (a) at a point outside the tube, (b) at a point inside the tube.
(Sol.) $d V=\int_{0}^{2 \pi} \frac{\rho_{s} b d \phi^{\prime} d z^{\prime}}{4 \pi \varepsilon_{0} \sqrt{b^{2}+\left(z-z^{\prime}\right)^{2}}}=\frac{\rho_{s} b d z^{\prime}}{2 \varepsilon_{0} \sqrt{b^{2}+\left(z-z^{\prime}\right)^{2}}}$
(a) $V_{o}=\int_{0}^{h} \frac{\rho_{s} b d z^{\prime}}{2 \varepsilon_{0} \sqrt{b^{2}+\left(z-z^{\prime}\right)^{2}}}=\frac{b \rho_{s}}{2 \varepsilon_{0}} \ln \frac{b+\sqrt{b^{2}+z^{2}}}{(z-h)+\sqrt{b^{2}+(z-h)^{2}}}, \quad \rho_{s}=\frac{Q}{2 \pi b h}$

$$
\vec{E}_{o}=-\hat{z} \frac{d V}{d z}=\hat{z} \frac{b \rho_{s}}{2 \varepsilon_{0}}\left[\frac{1}{\sqrt{b^{2}+(z-h)^{2}}}-\frac{1}{\sqrt{b^{2}+z^{2}}}\right]
$$

(b) $V_{i}=\int_{0}^{z} \frac{\rho_{s} b d z^{\prime}}{2 \varepsilon_{0} \sqrt{b^{2}+\left(z-z^{\prime}\right)^{2}}}+\int_{z}^{h} \frac{\rho_{s} b d z^{\prime}}{2 \varepsilon_{0} \sqrt{b^{2}+\left(z^{\prime}-z\right)^{2}}}$
$=\frac{\rho_{s} b}{2 \varepsilon_{0}} \ln \frac{\rho_{s}}{b^{2}}\left(z+\sqrt{b^{2}+z^{2}}\right) \cdot\left[(h-z)+\sqrt{b^{2}+(h-z)^{2}}\right]$

Eg. Consider two spherical conductors with radii b_{1} and $b_{2}\left(b_{2}>b_{1}\right)$ that are connected wire. The distance between the conductors is very large in comparison to b_{2} so that charges on spherical conductors may be considered uniformly distributed. A total charge Q is deposited on the spheres. Find (a) the charges on the two spheres, and (b) the electric field intensities at the sphere surfaces?
(a) $\frac{Q_{1}}{4 \pi \varepsilon_{0} b_{1}}=\frac{Q_{2}}{4 \pi \varepsilon_{0} b_{2}}, \frac{Q_{1}}{Q_{2}}=\frac{b_{1}}{b_{2}}, Q_{1}+Q_{2}=Q$

$$
Q_{1}=\frac{b_{1}}{b_{1}+b_{2}} Q \quad \text { and } \quad Q_{2}=\frac{b_{2}}{b_{1}+b_{2}} \mathrm{Q}
$$

(b) $\mathrm{E}_{1 n}=\frac{Q_{1}}{4 \pi \varepsilon_{0} b_{1}^{2}} \quad$ and $\quad E_{2 n}=\frac{Q_{2}}{4 \pi \varepsilon_{0} b_{2}^{2}}, \frac{E_{1}}{E_{2}}=\left(\frac{b_{2}}{b_{1}}\right)^{2} \frac{Q_{1}}{Q_{2}}=\frac{b_{2}}{b_{1}}$

Eg. Obtain a formula for the electric field intensity on the axis of a circular disk of radius \boldsymbol{b} that carries uniform surface charge density ρ_{s}. [高考]
(Sol.) $d s^{\prime}=r^{\prime} d r^{\prime} d \phi^{\prime}, \quad R=\sqrt{z^{2}+r^{\prime 2}}$
$V=\frac{\rho_{s}}{4 \pi \varepsilon_{0}} \int_{0}^{2 \pi} \int_{0}^{b} \frac{r^{\prime}}{\left(z^{2}+r^{\prime 2}\right)^{1 / 2}} d r^{\prime} d \phi^{\prime}=\frac{\rho_{s}}{2 \varepsilon_{0}}\left[\left(z^{2}+b^{2}\right)^{1 / 2}-|z|\right]$

$\vec{E}=-\nabla V=-\hat{z} \frac{\partial V}{\partial z}=\left\{\begin{array}{cc}\hat{z} \frac{\rho_{s}}{2 \varepsilon_{0}}\left[1-z\left(z^{2}+b^{2}\right)^{-1 / 2}\right] & z>0 \\ -\hat{z} \frac{\rho_{s}}{2 \varepsilon_{0}}\left[1+z\left(z^{2}+b^{2}\right)^{-1 / 2}\right] & z<0\end{array}\right.$
As $z \gg 1 \Rightarrow z\left(z^{2}+b^{2}\right)^{-1 / 2} \cong 1-\frac{b^{2}}{2 z^{2}}, \vec{E}=\hat{z} \frac{\left(\pi b^{2} \rho_{s}\right)}{4 \pi \varepsilon_{0} z^{2}}=\left\{\begin{array}{cl}\hat{z} \frac{Q}{4 \pi \varepsilon_{0} z^{2}} & z>0 \\ -\hat{z} \frac{Q}{4 \pi \varepsilon_{0} z^{2}} & z<0\end{array}\right.$
Eg. Make a two-dimensional sketch of the equipotential lines and the electric field lines for an electric dipole.
(Sol.)
For an electric dipole, $V=\frac{q d \cos \theta}{4 \pi \varepsilon_{0} R^{2}}=$ constant $\Rightarrow R=c_{v} \sqrt{\cos \theta}$ $d \vec{l}=k \vec{E}$, where k is a constant.
$\hat{a_{R}} d R+\hat{a_{\theta}} R d \theta+\hat{a_{\phi}} R \sin \theta d \phi=k\left(\hat{a_{R}} E_{R}+\hat{a_{\theta}} E_{\theta}+\hat{a_{\phi}} E_{\phi}\right)$

$\frac{d R}{E_{R}}=\frac{R d \theta}{E_{\theta}}=\frac{R \sin \theta d \phi}{E_{\phi}}, \frac{d R}{2 \cos \theta}=\frac{R d \theta}{\sin \theta}, R=c_{E} \sin ^{2} \theta$

1-3 Magnetic Fields

Magnetic field: $\vec{H}=\frac{\vec{B}}{\mu}=\frac{\vec{B}}{\mu_{0}}-\vec{M}$, where $\mu_{0}=4 \pi \times 10^{-7}(\mathrm{~A} / \mathrm{m})$ in the free space.
Magnetic flux density: $\vec{B}=\frac{\mu_{0} I}{4 \pi} \oint_{C} \frac{d \ell \times \hat{a}_{R}}{R^{2}}$
Ampere's law of $\vec{H}: \oint \vec{H} \cdot \mathrm{~d} \vec{l}=I \Leftrightarrow \nabla \times \vec{H}=\vec{J}$
$\frac{1}{\mu_{o}} \nabla \times \vec{B}=\vec{J}+\vec{J}_{m}=\vec{J}+\nabla \times \vec{M}$ or $\nabla \times\left(\frac{\vec{B}}{\mu_{0}}-\vec{M}\right)=\vec{J}$,
$\vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{M} \Rightarrow \oint \vec{H} \cdot d \vec{l}=I$, and $\vec{B}=\mu_{0}(\vec{H}+\vec{M})=\mu_{0}\left(1+\chi_{m}\right) \vec{H}=\mu_{0} \mu_{r} \vec{H}$,
where $\mu_{r}=1+\chi_{m}=\frac{\mu}{\mu_{0}}$
Gauss's law of $\vec{B}: \nabla \cdot \vec{B}=0 \Leftrightarrow \oiint_{S} \vec{B} \cdot \mathrm{~d} \vec{S}=0$
$\because \nabla \cdot \vec{B}=0, \exists \vec{A}$ fulfills $\vec{B}=\nabla \times \vec{A}$
$\nabla \times \vec{B}=\mu \vec{J}=\nabla \times \nabla \times \vec{A}=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}$
Choose $\nabla \cdot \vec{A}=0 \Rightarrow \nabla^{2} \vec{A}=-\mu \vec{J}$ (Note: $\nabla^{2} V=-\frac{\rho}{\varepsilon}$ is scalar Poisson's equation)
$\because V=\frac{1}{4 \pi \varepsilon} \iiint_{V} \frac{\rho}{R} d v^{\prime}, \quad \therefore \vec{A}=\frac{\mu}{4 \pi} \iiint_{V^{\prime}} \frac{\vec{J}}{R} d v^{\prime}$
(Wb/m)

Magnetic flux: $\Phi=\iint_{S} \vec{B} \cdot d \vec{S}=\iint_{S}(\nabla \times \vec{A}) \cdot d \vec{S}=\oint_{C} \vec{A} \cdot d \vec{l}^{\prime}$
Biot-Savart's law: $\vec{B}=\frac{\mu I}{4 \pi} \oint \frac{d \vec{l} ' \times \hat{a}_{R}}{R^{2}}=\frac{\mu I}{4 \pi} \oint_{C^{\prime}} \frac{d \vec{l} ' \times \vec{R}}{R^{3}}$
$\left.\vec{A}=\frac{\mu}{4 \pi} \iint_{V^{\prime}} \frac{\vec{J}}{R} \mathrm{dv}^{\prime}=\frac{\mu I}{4 \pi} \oint_{C^{\prime}} \frac{d \vec{l}}{R}, \because \nabla \times(f \vec{G})=f \nabla \times \vec{G}+(\nabla f) \times \vec{G}\right)$,
$\therefore \vec{B}=\nabla \times \vec{A}=\nabla \times\left[\frac{\mu I}{4 \pi} \oint_{C^{\prime}} \frac{d \overrightarrow{l^{\prime}}}{R}\right]=\frac{\mu I}{4 \pi} \oint_{C^{\prime}} \nabla \times\left(\frac{d \vec{l}^{\prime}}{R}\right)=\frac{\mu I}{4 \pi} \oint\left[\frac{1}{R} \nabla \times d l^{\prime}+\left(\nabla \frac{1}{R}\right) \times d l^{\prime}\right]=\frac{\mu I}{4 \pi} \oint_{C^{\prime}} \frac{d \overrightarrow{l^{\prime}} \times \hat{a}_{R}}{R^{2}}$

Note: $\left\{\begin{array}{l}\nabla=\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z} \\ d \vec{l} '=\hat{x} d x^{\prime}+\hat{y} d y^{\prime}+\hat{z} d z^{\prime} \Rightarrow \nabla \times d \vec{l}^{\prime}=0\end{array}\right.$, and then $d \vec{B}=\frac{\mu I}{4 \pi}\left(\frac{d \vec{l}^{\prime} \times \hat{a}_{R}}{R^{2}}\right)=\frac{\mu I}{4 \pi} \frac{d \vec{l} ' \times \vec{R}}{R^{3}}$

Eg. A direct current I flows in a straight wire of length $2 L$. Find the magnetic flux density \vec{B} at a point located at a distance \boldsymbol{r} from the wire in the bisecting plane.
(Sol.) $d \vec{l}{ }^{\prime} \times \vec{R}=\hat{z} d z^{\prime} \times\left(\hat{a}_{r} r-\hat{z} z^{\prime}\right)=\hat{a}_{\phi} r d z^{\prime}, \quad R=\left(z^{2}+r^{2}\right)^{1 / 2}$
$\vec{B}=\hat{a}_{\phi} \frac{\mu_{o} I}{4 \pi} \int_{-L}^{L} \frac{r d z^{\prime}}{\left(z^{12}+r^{2}\right)^{3 / 2}}=\hat{a}_{\phi} \frac{\mu_{o} I L}{2 \pi r \sqrt{L^{2}+r^{2}}}$

Eg. Find the magnetic flux density at the center of a square loop, with side \boldsymbol{w} carrying a direct current I.
(Sol.) $L=\frac{w}{2}, r=\frac{w}{2}$ in this case,
$\vec{B}=4 \times \hat{z} \frac{\mu_{0} I \frac{w}{2}}{2 \pi \frac{w}{2} \sqrt{\left(\frac{w}{2}\right)^{2}+\left(\frac{w}{2}\right)^{2}}}=\hat{z} \frac{2 \sqrt{2} \mu_{0} I}{\pi w}$

Eg. Find the magnetic flux density at a point on the axis of a circular loop of radius b that a direct current I.
(Sol.) $d^{\prime} l^{\prime}=\hat{a}_{\phi} b d \phi^{\prime}, \vec{R}=\hat{z} z-\hat{a}_{r} b, R=\left(z^{2}+b^{2}\right)^{1 / 2}$

$d \overrightarrow{l^{\prime}} \times \vec{R}=\hat{a}_{r} b z d \phi^{\prime}+\hat{\mathrm{z}} b^{2} d \phi^{\prime}$
$\vec{B}=\frac{\mu_{0} I}{4 \pi} \int_{0}^{2 \pi} \frac{\hat{a}_{r} b z+\hat{z} b^{2}}{\left(z^{2}+b^{2}\right)^{3 / 2}} d \phi^{\prime}=\hat{z} \frac{\mu_{o} I b^{2}}{2\left(z^{2}+b^{2}\right)^{3 / 2}}$. In case of $z=0, \quad \vec{B}=\hat{z} \frac{\mu_{o} I}{2 b}$
Eg. Determine the magnetic flux density at a point on the axis of a solenoid with radius b and length L, and with a current in its N turns of closely wound coil.
(Sol.) $d \vec{B}=\frac{\hat{z} \mu_{0} I b^{2}}{2\left[\left(z-z^{\prime}\right)^{2}+b^{2}\right]^{\frac{3}{2}}}\left(\frac{N}{L}\right) d z^{\prime}$

$$
\vec{B}=\int_{0}^{L} d \vec{B}=\frac{\mu_{o} N I}{2 L}\left[\frac{L-z}{\left[(L-z)^{2}+b^{2}\right]^{1 / 2}}+\frac{z}{\sqrt{z^{2}+b^{2}}}\right]=\frac{\mu_{o} N I}{2 L}\left[\frac{z}{\sqrt{z^{2}+b^{2}}}-\frac{z-L}{\sqrt{(z-L)^{2}+b^{2}}}\right]
$$

Ampere＇s law of $\vec{B}: \nabla \times \overrightarrow{\mathrm{B}}=\mu \vec{J} \Leftrightarrow \oint_{c} \vec{B} \cdot d \vec{l}=\mu I$ ，where $\mu=\mu_{0}$ in the free space．
Eg．An infinitely long，straight conductor with a circular cross section of radius b carries a steady current I ．Determine the magnetic flux density both inside and outside the conductor．［交大光電所］
（Sol．）
（a）Inside the conductor，$r \leq b$ ：

$\oint_{C 1} \vec{B} \cdot \mathrm{~d} \vec{l}=\int_{0}^{2 \pi} B r d \phi=2 \pi r B=\mu_{o}\left(\frac{\pi r^{2}}{\pi b^{2}}\right) I=\mu_{0}\left(\frac{r}{b}\right)^{2} I \Rightarrow \overrightarrow{\mathrm{~B}}=\hat{a}_{\phi} \frac{\mu_{o} r I}{2 \pi b^{2}}$
（b）Outside the conductor：$\oint_{C_{2}} \vec{B} \cdot d \vec{l}=2 \pi r B=\mu_{o} I \Rightarrow \vec{B}=\hat{a}_{\phi} \frac{\mu_{0} I}{2 \pi r}$
Eg．A long line carrying a current I folds back with semicircular bend of radius b ． Determine magnetic flux density at the center point \boldsymbol{P} of the bend．［高考］ （Sol．）
$\vec{B}=\overrightarrow{B_{1}}+\overrightarrow{B_{2}}$ ，where $\vec{B}_{1}=2 \cdot \hat{z} \frac{\mu_{o} I}{4 \pi b}, \vec{B}_{2}=\hat{z} \frac{\mu_{o} I}{4 b}$

Eg．A current I flows in the inner conductor of an infinitely long coaxial line and returns via the outer conductor．The radius of the inner conductor is a ，and the inner and outer radii of the outer conductor are b and \boldsymbol{c} ，respectively．Find the magnetic flux density \vec{B} for all regions and plot $|\vec{B}|$ versus r ．［高考電機技師］
（Sol．） $0 \leq r \leq a, \vec{B}=\hat{a}_{\phi} \frac{\mu r I}{2 \pi a^{2}}, a \leq r \leq b, \vec{B}=\hat{a}_{\phi} \frac{\mu I}{2 \pi r}$
$b \leq r \leq c, \quad \vec{B}=\hat{a}_{\phi}\left(\frac{c^{2}-r^{2}}{c^{2}-b^{2}}\right) \frac{\mu I}{2 \pi r}$
Eg．Determine the magnetic flux density inside an infinitely long solenoid with air core having \boldsymbol{n} closely wound turns per unit length and carrying a current I ．
（Sol．）$B L=\mu_{o n} L I \Rightarrow B=\mu_{o n} I$

Eg．The figure shows an infinitely long solenoid with air core having \boldsymbol{n} closely wound turns per unit length．The windings are slanted at an angle α and carry a current I ．Determine the magnetic flux density both inside and outside the solenoid．
（Sol．）$\vec{B}_{1}=\left\{\begin{array}{l}0,0<r<b \\ \hat{a}_{\varphi} \frac{2 \pi \mu_{0} b n I \sin \alpha}{2 \pi r}=\hat{a}_{\phi} \frac{\mu_{0} b n I \sin \alpha}{r}, r>b\end{array}\right.$ ，
$\overrightarrow{B_{2}}=\left\{\begin{array}{l}\hat{z} \mu_{o} n I \cos \alpha, 0<r<b \\ 0, r>b\end{array}, \vec{B}=\overrightarrow{B_{1}}+\overrightarrow{B_{2}}\right.$

Eg．Determine the magnetic flux density inside a closely wound toroidal coil with an air core having N turns and carrying a current I ．The toroid has a mean radius b ，and the radius of each turn is a ．
（Sol．）$\oint \overrightarrow{\mathrm{B}} \cdot \mathrm{d} \vec{l}=2 \pi r B=\mu_{o} N I$
$\vec{B}=\hat{a}_{\phi} B=\hat{a}_{\phi} \frac{\mu_{o} N I}{2 \pi r},(b-a)<r<(b+a), \quad \vec{B}=0$ for $r<(b-a)$ and $r>(b+a)$

Eg．In certain experiments it is desirable to have a region of constant magnetic flux density．This can be created in an off－center cylindrical cavity．The uniform axial current density is $\vec{J}=\hat{z} J$ ．Find the magnitude and direction of \vec{B} in the cylindrical cavity whose axis is displaced from that of the conducting part by a distance d ．［台大電研，清大電研，中原電機］
（Sol．）$\vec{J}=\hat{z} J, \oint \vec{B} \cdot \mathrm{~d} \vec{l}=\mu_{o} I$
If no hole exists，
$2 \pi r_{1} B_{\phi 1}=\mu_{o} \pi r_{1}^{2} J \Rightarrow B_{\phi 1}=\frac{\mu_{o} r_{1}}{2} J \Rightarrow\left\{\begin{array}{l}B_{x 1}=\frac{-\mu_{o} J}{2} y_{1} \\ B_{y 1}=\frac{\mu_{o} J}{2} x_{1}\end{array}\right.$
For $-\vec{J}$ in the hole potion，$B_{\phi 2}=-\frac{\mu_{o} r_{2}}{2} J \Rightarrow\left\{\begin{array}{l}B_{x 2}=\frac{\mu_{0} J}{2} y_{2} \\ B_{y 2}=-\frac{\mu_{0} J}{2} x_{2}\end{array}\right.$
At $y_{1}=y_{2}$ and $x_{1}=x_{2}+d \Rightarrow B_{x}=B_{x 1}+B_{x 2}=0$ ，and $B_{y}=B_{y 1}+B_{y 2}=\frac{\mu_{o} J}{2} d$

1－4 Electromagnetic Forces

Lorentz force equation：$\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})$
Electric force：$\vec{F}_{e}=q \vec{E}$ ．Magnetic force：$\vec{F}_{m}=q \vec{v} \times \overrightarrow{\mathrm{B}}$

Eg．An electron is injected with an initial velocity $\vec{v}_{o}=\hat{y} v_{o}$ into a region where both an electric field and a magnetic field \vec{B} exist．Describe the motion of the electron if $\vec{E}=\hat{z} E_{o}$ and $\vec{B}=\hat{x} B_{o}$ ．Discuss the effect of the relative magnitude of E_{0} and B_{0} on the electron paths in parts．
（Sol．）$m \frac{\partial \vec{v}}{\partial t}=-e(\vec{E}+\vec{v} \times \vec{B})$ ，
$\left\{\begin{array}{l}\vec{E}=\hat{z} E_{o} \\ \vec{B}=\hat{x} B_{o}\end{array} \Rightarrow\left\{\begin{array}{l}\frac{\partial v_{x}}{\partial t}=0 \\ \frac{\partial v_{y}}{\partial t}=-\frac{e}{m} B_{o} v_{z} \\ \frac{\partial v_{z}}{\partial t}=-\frac{e}{m}\left(E_{o}-B_{o} v_{y}\right)\end{array} \Rightarrow\left\{\begin{array}{l}v_{x}=0 \\ v_{y}=\left(v_{o}-\frac{E_{o}}{B_{o}}\right) \cos \omega_{0} t+\frac{E_{o}}{B_{o}} \\ v_{z}=\left(\frac{E_{o}}{R_{o}}-v_{o}\right) \sin \omega_{0} t ; \omega_{0}=\frac{e}{m} B_{o}\end{array}\right.\right.\right.$
（If $v_{o} \neq \frac{E_{o}}{B_{o}}$ ）$\Rightarrow\left\{\begin{array}{l}x=0 \\ y=\frac{c_{2}}{\omega_{o}} \sin \omega_{o} t+\frac{E_{o}}{B_{o}} t \\ z=-\frac{c_{2}}{\omega_{o}}\left(1-\cos \omega_{o} t\right), c_{2}=v_{o}-\frac{E_{o}}{B_{o}}\end{array} \quad \Rightarrow\left(y-\frac{E_{o}}{B_{o}} t\right)^{2}+\left(z+\frac{c_{2}}{\omega_{o}}\right)^{2}=\left(\frac{c_{2}}{\omega_{o}}\right)^{2}\right.$
Magnetic force due to \vec{B} and I：

$$
F_{m}=q \vec{v} \times \vec{B} \Rightarrow d F_{m}=d q \frac{d \vec{\ell}}{d t} \times \vec{B}=\frac{d q}{d t} d \vec{\ell} \times \vec{B}=I \vec{d} \times \vec{B}, \therefore F_{m}=I \oint_{C} d \vec{\ell} \times \vec{B}
$$

Eg．Determine the force per unit length between two infinitely long parallel conducting wires carrying currents I_{1} and I_{2} in the same direction．The wires are separated by a distance d ．［清大電研］
（Sol．）$\vec{F}_{12}{ }^{\prime}=I_{2}\left(\hat{z} \times \vec{B}_{12}\right), \quad \vec{B}_{12}=-\hat{x} \frac{\mu_{0} I_{1}}{2 \pi d} \Rightarrow \vec{F}_{12}{ }^{\prime}=-\hat{y} \frac{\mu_{0} I_{1} I_{2}}{2 \pi d}$

Eg．Calculate the force per unit length on each of three equidistant，infinitely long，parallel wires d apart，each carrying a current of I in the same direction． Specify the direction of the force．
（Sol．）$I_{1}=I_{2}=I_{3}=I, \vec{B}_{2}=\hat{x} 2 B_{12} \cos 30^{\circ}=\hat{x} \frac{\sqrt{3} \mu_{0} I}{2 \pi d}, \quad \vec{f}_{2}=-\hat{z} I \times \vec{B}_{2}=-\hat{y} I B_{2}=-\hat{y} \frac{\sqrt{3} \mu_{0} I^{2}}{2 \pi d}$

Eg．The bar AA＇，serves as a conducting path for the current I in two very long parallel lines．The lines have a radius b and are spaced at a distance d apart．Find the direction and the magnitude of the magnetic force on the bar．［中山物理所］
（Sol．）
$\vec{B}=-\hat{z} \frac{\mu_{0} I}{4 \pi}\left(\frac{1}{y}+\frac{1}{d-y}\right), \quad \overrightarrow{\ell \ell}=\hat{y} d y$

$\Rightarrow d \vec{F}=I d \vec{\ell} \times \vec{B}=-\hat{x} \frac{\mu_{0} I^{2}}{4 \pi}\left(\frac{1}{y}+\frac{1}{d-y}\right) d y \Rightarrow \vec{F}=\int_{b}^{d-b} d \stackrel{\rightharpoonup}{F}=-\hat{x} \frac{\mu_{0} I^{2}}{2 \pi} \ln \left(\frac{d}{b}-1\right)$

Application of the electric forces：The e－paper

Scalar electric potential function: $\quad V=\frac{1}{4 \pi \varepsilon} \iiint_{V^{\prime}} \frac{\rho}{R} d v^{\prime}$
Vector magnetic potential function: $\vec{A}=\frac{\mu}{4 \pi} \iiint_{V^{\prime}} \frac{\vec{J}}{R} d v^{\prime}$
Retarded potentials:
$V(R, t)=\frac{1}{4 \pi \varepsilon} \iiint_{V^{\prime}} \frac{\rho(t-R / v)}{R} d v^{\prime}, \quad \vec{A}(R, t)=\frac{\mu}{4 \pi} \iiint_{V^{\prime}} \frac{\vec{J}(t-R / v)}{R} d v^{\prime}$

1－5 Faraday＇s Law and Magnetic Dipoles

Faraday＇s law：$\nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$ or $\oint_{C} \vec{E} \cdot d \vec{\ell}=-\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d \vec{S}$
$\because \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}=-\frac{\partial}{\partial t}(\nabla \times \vec{A}) \Rightarrow \nabla \times\left(\vec{E}+\frac{\partial \vec{A}}{\partial t}\right)=0$
$\therefore \exists V$ fulfills $\vec{E}+\frac{\partial \vec{A}}{\partial t}=-\nabla V \Rightarrow \vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t}$
Note：In static field：$\vec{E}=-\nabla V$ ，but in time－varying field：$\vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t}$
Emf：$\quad V=\oint \vec{E} \cdot d \vec{l}$ ．Magnetic flux：$\Phi=\oint_{S} \vec{B} \cdot d \vec{S}, \oint_{C} \vec{E} \cdot \vec{\ell}=-\iint_{S} \frac{\partial \vec{B}}{\partial t} \cdot d \vec{S} \Rightarrow V=-\frac{d \Phi}{d t}$
Motional emf：$\quad V^{\prime}=\oint_{C}(\vec{v} \times \vec{B}) \cdot d \vec{l} \quad($ Volt $)$
$\stackrel{\rightharpoonup}{F}_{m}=q \stackrel{\rightharpoonup}{v} \times \vec{B} \Rightarrow \frac{\vec{F}_{m}}{q}=\stackrel{\rightharpoonup}{v} \times \vec{B} \equiv-\vec{E}_{m} \Rightarrow V^{\prime}=-\oint_{C} \vec{E}_{m} \cdot d \vec{l}=\oint(\vec{v} \times \vec{B}) \cdot d \vec{l}$

Eg．A circular loop of N turns of conducting wire line in the $\boldsymbol{x y}$－plane with its center at the origin of a magnetic field specified by $\vec{B}=\hat{z} B_{0} \cos (\pi r / 2 b) \sin \omega t$ ， where b is the radius of the loop and ω is the angular frequency．Find the emf induced in the loop．

$$
\begin{align*}
& \Phi=\int_{0}^{b}\left[\hat{z} B_{0} \cos \left(\frac{\pi r}{2 b}\right) \sin (\omega t)\right] \cdot[\hat{z} 2 \pi r d r]=\frac{8 b^{2}}{\pi}\left(\frac{\pi}{2}-1\right) B_{0} \sin (\omega t) \tag{Sol.}\\
& V=-\frac{N d \Phi}{d t}=-\frac{8 N}{\pi} b^{2}\left(\frac{\pi}{2}-1\right) B_{0} \omega \cos (\omega t)
\end{align*}
$$

Eg．A metal bar slides over a pair of conducting rails in a uniform magnetic field $\vec{B}=\hat{z} B_{0}$ with a constant velocity \boldsymbol{v} ．（a）Determine the open－circuit voltage \boldsymbol{V}_{0} that appears across terminals 1 and 2．（b）Assuming that a resistance R is connected between the two terminals，find the electric power dissipated in \boldsymbol{R} ． Neglect the electric resistance of the metal bar and of the conducting rails．［交大電子物理所
（Sol）．（a）$V_{0}=V_{1}-V_{2}=\int_{2^{\prime}}^{1}\left(\hat{x} v \times \hat{z} B_{0}\right) \cdot(\hat{y} d l)=-v B_{0} h$

（b）$P_{e}=I^{2} R=\left(\frac{v B_{0} h}{R}\right)^{2} R=\frac{\left(v B_{0} h\right)^{2}}{R}$
Eg．The circuit in Fig．is situated in a magnetic field $\vec{B}=\hat{z} 3 \cos \left(5 \pi 10^{7} t-\frac{2}{3} \pi x\right)$ μT ．Assuming $R=15 \Omega$ ，find the current i ．［中山物理所］
（Sol．）$\Phi=\int_{0}^{0.6} 3 \cos \left(5 \pi \times 10^{7} t-\frac{2}{3} \pi x\right) 10^{-6} \cdot(0.2 d x)$
$V=-\frac{d \Phi}{d t}=45\left[\cos \left(5 \pi \times 10^{7} t-\frac{2}{3} \pi 0.6\right)-\cos \left(5 \pi 10^{9} t\right)\right]$

$i=\frac{V}{2 R}=1.76 \sin \left(5 \pi 10^{7} t-0.2 \pi\right)$
Eg．A conducting sliding bar oscillates over two parallel conducting rails in a sinusoidally varying magnetic field $\vec{B}=\hat{z} 5 \cos (\omega t) \quad \boldsymbol{T}$ ．The position of the sliding bar is given by $\boldsymbol{x}=\mathbf{0 . 3 5}(1-\cos \omega t)$ ，and the rails are terminated in a resistance $R=0.2$ Ω ．Find \boldsymbol{i} ．
（Sol．）$\Phi=5 \cos \omega t \cdot 0.2(0.7-x), x=0.35(1-\cos \omega t), \quad i=-\frac{1}{R} \frac{d \Phi}{d t}$
$\Rightarrow i=1.75 \omega \sin \omega t \cdot(1+2 \cos \omega t)$

Eg．The Faraday disk generator consists of a circular metal disk rotating with a constant angular velocity ω in a uniform and constant magnetic field of flux density $B=\hat{z} B_{0}$ that is parallel to the axis of rotation．Brush contacts are the open－circuit voltage of the generator if the radius of the disk is \boldsymbol{b} ．
（Sol．）$V_{0}=\oint(\vec{v} \times \vec{B}) \cdot d \vec{l}=\int_{3}^{4}\left[\left(\hat{a}_{\phi} r \omega\right) \times \hat{z} B_{0}\right] \cdot\left(\hat{a}_{r} d r\right)=\omega B_{0} \int_{b}^{0} r d r=\frac{\omega B_{0} b^{2}}{2}$

Magnetic dipole moment：$\vec{m}=\hat{z} I S=\hat{z} m$ ，where S is the area of the loop that carries I and $m=I S$ ．

Vector potential of a magnetic dipole：$\vec{A}=\frac{\mu_{0} \vec{m} \times \hat{a}_{R}}{4 \pi R^{2}}$ ，where $\vec{B}=\nabla \times \vec{A}=\frac{\mu_{o} m}{4 \pi R^{3}}\left(\hat{a}_{R} 2 \cos \theta+\hat{a}_{\theta} \sin \theta\right)$

Eg．For the small rectangular loop with sides \boldsymbol{a} and \boldsymbol{b} that carries a current I ． Find the vector magnetic potential \vec{A} at a distant point $\boldsymbol{P}(x, y, z)$ ．And determine the magnetic flux density \vec{B} and \vec{A} ．［交大光電所］
（Sol．）
$\vec{A}=\frac{\mu_{0} \vec{m} \times \hat{a}_{R}}{4 \pi R^{2}}$ ，where $m=I a b, \quad \vec{B}=\nabla \times \vec{A}=\frac{\mu_{o} m}{4 \pi R^{3}}\left(\hat{a}_{R} 2 \cos \theta+\hat{a}_{\theta} \sin \theta\right)$

Magnetization vector：$\vec{M}=\lim _{\Delta V \rightarrow 0} \frac{\sum_{k=1}^{\Delta V} \overrightarrow{m_{k}}}{\Delta V}(A / m)$ ，where \vec{m}_{k} is the magnetic dipole moment of an atom．
$d \vec{A}=\frac{\mu_{o} \vec{M} \times \hat{a}_{R}}{4 \pi R^{2}} d v^{\prime}=\frac{\mu_{o}}{4 \pi} \vec{M} \times \nabla^{\prime}\left(\frac{1}{R}\right) d v^{\prime}=\frac{\mu_{o}}{4 \pi}\left[\frac{1}{R} \nabla^{\prime} \times \vec{M}-\nabla^{\prime} \times\left(\frac{\vec{M}}{R}\right)\right]$
$\Rightarrow \vec{A}=\frac{\mu_{o}}{4 \pi} \iiint_{V} \frac{\nabla^{\prime} \times \vec{M}}{R} d v^{\prime}-\frac{\mu_{o}}{4 \pi} \iint_{V} \nabla \times\left(\frac{\vec{M}}{R}\right) d v^{\prime} \quad\left(\iiint_{V} \nabla^{\prime} \times \vec{F} \mathrm{~d} v^{\prime}=-\oint \oint_{s} \vec{F} \times d S^{\prime}\right)$
$=\frac{\mu_{o}}{4 \pi} \iiint_{V} \frac{\nabla^{\prime} \times \vec{M}}{R} \mathrm{~d} v^{\prime}+\frac{\mu_{o}}{4 \pi} \oiint \frac{\vec{M} \times \hat{a}_{n}{ }^{\prime}}{R} \mathrm{~d} S^{\prime}$
\therefore Magnetization volume current density：$\vec{J}_{m}=\nabla \times \vec{M} \quad\left(A / m^{2}\right)$
Magnetization surface current density：$\vec{J}_{m s}=\vec{M} \times \hat{a}_{n} \quad(A / m)$
Equivalent Magnetization Charge Densities：
$V_{m}=\frac{1}{4 \pi} \oiint_{S^{\prime}} \frac{\vec{M} \cdot \hat{a}_{n^{\prime}}{ }^{\prime}}{R} \mathrm{~d} S^{\prime}+\frac{1}{4 \pi} \iiint_{V^{\prime}}-\frac{\left(\nabla^{\prime} \cdot \vec{M}\right)}{R} \mathrm{~d} \nu^{\prime} \quad\left(\right.$ Note：$\left.V=\frac{1}{4 \pi \varepsilon_{o}} \oiint \frac{\vec{P} \cdot \hat{a}_{n}{ }^{\prime}}{R} d S^{\prime}+\frac{1}{4 \pi \varepsilon_{o}} \iiint_{V^{\prime}} \frac{-\left(\nabla^{\prime} \cdot \vec{P}\right)}{R} d v^{\prime}\right)$
Define the magnetization surface charge density as $\rho_{m s}=\vec{M} \cdot \hat{a}_{n}$ and the magnetization volume charge density as $\rho_{m}=-\nabla \cdot \vec{M}$

Eg．A circular rod of magnetic material with permeability μ is inserted coaxially in the long solenoid．The radius a of the rod is less than the inner radius \boldsymbol{b} of the solenoid．The solenoid＇s winding has n turns per unit length and carries a current I ．（a）Find the values of \vec{B}, \vec{H} ，and \vec{M} inside the solenoid for $\boldsymbol{r}<\boldsymbol{a}$ and for $a<r<b$ ．（b）What are the equivalent magnetization current densities $\boldsymbol{J}_{\mathrm{m}}$ and J_{ms} for the magnetized rod？［清大電研］
（Sol．）（a）$r<a: \vec{H}=\hat{z} n I, \vec{B}=\hat{z} \mu n I, \vec{M}=\frac{\vec{B}}{\mu_{0}}-\vec{H}=\hat{z}\left(\frac{\mu}{\mu_{0}}-1\right) n I$ ，
$a<r<b: \vec{H}=\hat{z} n I, \vec{B}=\hat{z} \mu_{o} n I, \vec{M}=0$
（b）$\vec{J}_{m}=\nabla^{\prime} \times \vec{M}=0, \vec{J}_{m s}=\vec{M} \times \hat{a}_{n}=\left(\hat{z} \times \hat{a}_{r}\right)\left(\frac{\mu}{\mu_{0}}-1\right) n I=\hat{a}_{\phi}\left(\frac{\mu}{\mu_{0}}-1\right) n I$
Eg．A ferromagnetic sphere of radius b is uniformly magnetized with a magnetization $\vec{M}=\hat{z} M_{0}$ ．（a）Determine the equivalent magnetization current densities \vec{J}_{m} and $\vec{J}_{m s}$ ．（b）Determine the magnetic flux density at the center of the sphere．［台大電研］
（Sol．）（a）$\vec{J}_{m}=\nabla^{\prime} \times \vec{M}=0, \vec{J}_{m s}=\left(\hat{a}_{R} \cos \theta-\hat{a}_{\theta} \sin \theta\right) M_{o} \times \hat{a}_{R}=\hat{a}_{\phi} M_{o} \sin \theta$
（b）$d \vec{B}=\hat{z} \frac{\mu_{o}\left(J_{m s} b \mathrm{~d} \theta\right)(b \sin \theta)^{2}}{2\left(b^{2}\right)^{3 / 2}}=\hat{z} \frac{\mu_{o} M_{o}}{2} \sin ^{3} \theta, \vec{B}=\hat{z} \frac{\mu_{o} M_{o}}{2} \int_{0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta=\hat{z} \frac{2}{3} \mu_{0} M_{0}$ ．
Eg．Determine the magnetic flux density on the axis of a uniformly magnetized circular cylinder of a magnetic material．The cylinder has a radius b ，length L and axial magnetization $\vec{M}=\hat{z} M_{0}$ 。［台大物研］
（Sol．）$\vec{J}_{m}=\nabla^{\prime} \times \vec{M}=0, \vec{J}_{m s}=\vec{M} \times \hat{a}_{n}=\left(\hat{z} M_{0}\right) \times \hat{a}_{r}=\hat{a}_{\phi} M_{0}, \quad d I=J_{m}$
$\vec{B}=\hat{z} \int_{0}^{L} \frac{\mu_{0} M_{0} b^{2} d z^{\prime}}{2\left[\left(z-z^{\prime}\right)^{2}+b^{2}\right]^{3 / 2}}=\hat{z} \frac{\mu_{0} M_{0}}{2}\left[\frac{z}{\sqrt{z^{2}+b^{2}}}-\frac{z-L}{\sqrt{(z-L)^{2}+b^{2}}}\right]$

Eg．A cylindrical bar magnet of radius b and length L has a uniform magnetization $\vec{M}=\hat{z} M_{0}$ along its axis．Use the equivalent magnetization charge density concept to determine the magnetic flux density at an arbitrary distant point．［交大電子所］
（Sol．）$\rho_{m s}=\vec{M} \cdot \hat{a}_{n}=\left\{\begin{array}{l}M_{0}, \text { top } \\ -M_{0}, \text { bottom }, \rho_{\mathrm{m}}=0 \text { in the interior region } \\ 0, \text { sidewall }\end{array}\right.$
$q_{m}=\pi b^{2} \rho_{m s}=\pi b^{2} M_{0} \Rightarrow V_{m}(x, y, z)=\frac{q_{m}}{4 \pi}\left(\frac{1}{R+}-\frac{1}{R-}\right)$
$=\frac{q_{m} L \cos \theta}{4 \pi R^{2}}=\frac{\left(\pi b^{2} M_{o}\right) L \cos \theta}{4 \pi R^{2}}=\frac{M_{T} \cos \theta}{4 \pi R^{2}}$ ，where $M_{T}=\pi b^{2} L M_{0}$
$\vec{B}=-\mu_{o} \nabla V_{m}=\frac{\mu_{o} M_{T}}{4 \pi R^{3}}\left(\hat{a}_{R} 2 \cos \theta+a_{\theta} \sin \theta\right)$
Consider an infinitely long solenoid with n turns per unit length around to create a magnetic field；a voltage $V_{1}=-n d \Phi / d t$ is induced unit length，which opposes the current change．Power $P_{1}=-V_{1} I$ per unit length must be supplied to overcome this induced voltage in order to increase the current to I ．The work per unit volume required to produce a final magnetic flux density B_{f} is $W_{1}=\int_{0}^{B_{f}} H d B$ ．

