Chapter 1 Electromagnetic Field Theory

1-1 Electric Fields and Electric Dipoles
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Eg. Determine the electric field intensity of an infinitely long line charge of a

uniform density p; in air.
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Eg. Determine the electric field intensity of an infinite planar charge with a
uniform surface charge density p;.
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Eg. A line charge of uniform density p; in free space forms a semicircle of radius
b. Determine the magnitude and direction of the electric field intensity at the

center of the semicircle. [FJ,'J:E‘]
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Eg. Determine the electric field caused by spherical cloud of electrons with a

volume charge density p=-py for 0 < R <b (both p, and b are positive) and p=0
for R>b. [T “\?uf*——ff’l’ﬂfﬁl B
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Eg. A total charge Q is put on a thin spherical shell of radius 5. Determine the
electrical field intensity at an arbitrary point inside the shell. [{ ;57
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Electric dipole: A pair of equal but opposite charges with separation.
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Eg. At what value of @ does the electric field intensity of a z-directed dipole have
no z-component.
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1-2 Static Electric Potentials
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Electric potential due to discrete charges:
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Scalar electric potential due to various charge distributions:
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Note: 1. Vis a scalar, but E is a vector.

2. E=-VV isvalid only in the static EM field.



Eg. Obtain a formula for electrical field intensity along the axis of a uniform line
charge of length L. The uniform line-charge density is p;. [FJ,'J:E‘]
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Eg. A finite line charge of length L carrying uniform line charge density p; is

coincident with the x-axis. Determine  and E in the plane bisecting the line
charge.
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Eg. A charge is distributed uniformly over an LxL square plate. Determine V'

and £ ata point on the axis perpendicular to the plate and through its center.
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Eg. A positive point charge Q is at the center of a spherical conducting shell of an

inner radius R; and an outer radius R,. Determine £ and V as functions of the

radial distance R. [FJ,'J:E‘]
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Eg. A charge Q is distributed uniformly over the wall of a circular tube of radius

b and height 4. Determine £ and V on its axis (a) at a point outside the tube, (b)

at a point inside the tube.
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Eg. Consider two spherical conductors with radii b, and b, (b,>b;) that are
connected wire. The distance between the conductors is very large in comparison
to b, so that charges on spherical conductors may be considered uniformly
distributed. A total charge Q is deposited on the spheres. Find (a) the charges on
the two spheres, and (b) the electric field intensities at the sphere surfaces?
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Eg. Obtain a formula for the electric field intensity on the axis of a circular disk
of radius b that carries uniform surface charge density p;. [FJ,'J:E‘]
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Eg. Make a two-dimensional sketch of the equipotential lines and the electric
field lines for an electric dipole.
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For an electric dipole, =constant= R =c ~/cosd
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dl = kE , Where k is a constant.
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1-3 Magnetic Fields

B B |
Magnetic field: H =— =-——M , where uy=41x10"" (4/m) in the free space.
H o Hy
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Eg. A direct current I flows in a straight wire of length 2L. Find the magnetic

flux density B ata point located at a distance r from the wire in the bisecting
plane.

(Sol) dI'R = 2dz'x(a,r - 2') = d,rdz', R=(z* +7)"

Bog ,u.;IJ-L rdz' B Mol L
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Eg. Find the magnetic flux density at the center of a square loop, with side w

carrying a direct current 1.

(Sol.) L= i , I'= Y in this case,
2 2
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Eg. Find the magnetic flux density at a point on the axis of a circular loop of

radius b that a direct current 7.

(Sol.) dl'=a,bdg', R=2z-a,b, R=(z* +b*)"*

dI'x R = bzd§'+2b>dg'
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Eg. Determine the magnetic flux density at a point on the axis of a solenoid with

radius b and length L, and with a current in its /V turns of closely wound coil.

- 21, Ib*
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Ampere’s law of B: Vx B= ,uj & fl? -dl = ul , where u=u, in the free space.

Eg. An infinitely long, straight conductor with a circular cross section of radius b
carries a steady current /. Determine the magnetic flux density both inside and
outside the conductor. [T 5% ?C?Eﬁ‘] ¥

(Sol.) Z“b%" ‘

(a) Inside the conductor, »<b: T

2
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(b) Outside the conductor: it;B dl =2mB = ol = B = a,— Py
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Eg. A long line carrying a current / folds back with semicircular bend of radius b.
Determine magnetic flux density at the center point P of the bend. [FJ,'J:E‘]
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Eg. A current I flows in the inner conductor of an infinitely long coaxial line and
returns via the outer conductor. The radius of the inner conductor is a, and the

inner and outer radii of the outer conductor are b and c, respectively. Find the

magnetic flux densityE for all regions and plot ‘E‘ versus r. [Fﬂ,‘f%?i?ﬁﬁi il

— R I — .
(Sol) 0<r<a, B=a, ™ a<r<b, B=a, 2L
2ma 2mr
— —r’
b<r<c, B=a
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Eg. Determine the magnetic flux density inside an infinitely long solenoid with

air core having n closely wound turns per unit length and carrylng a current 1.
(Sol.) BL=pnLl => B= pnl l T
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Eg. The figure shows an infinitely long solenoid with air core having n closely
wound turns per unit length. The windings are slanted at an angle a and carry a

current I. Determine the magnetic flux density both inside and outside the

solenoid.
0, O<r<b
(Sol) B, = i, 2rp,bnlsina -3, Hbnlsina b
2mr r

— |zu,nlcosa, O0<r<b - — —
= , B=B, +B,
0, r>b
Eg. Determine the magnetic flux density inside a closely wound toroidal coil with
an air core having N turns and carrying a current I. The toroid has a mean

radius b, and the radius of each turn is a.

.

B_spog MM B b
B=aB=a, Eymt (b-a)<r<(b+a), B =0 for r<(b-a)and r>(b+a) y

(Sol.) §E -dl = 2B = 1wNI 3

Eg. In certain experiments it is desirable to have a region of constant magnetic

flux density. This can be created in an off-center cylindrical cavity. The uniform

axial current density is J =2%J. Find the magnitude and direction of B in the
cylindrical cavity whose axis is displaced from that of the conducting part by a

distance d. ['F"I-k”FET—F‘ j%—l\?rq_?[‘ H'@?ﬁf}ﬂ
(Sol) J =27, §B-di=p,I

If no hole exists,

—u,J
W xl ZTyl
27, B, :ﬂo”T1ZJ:>B¢1 =g =
B — o
yl 2 1
#,J
7 x2 2
For - J in the hole potion, B,, M 2
2 u,J
2= ) Xy

J
Hod 4

At y, =y, and x, =x,+d =B, =B_,+B_,=0,and By=Byl+By2=



1-4 Electromagnetic Forces

Lorentz force equation: F = q(E +yx E)
Electric force: Ii = gE . Magnetic force: Fm = q;x B

Eg. An electron is injected with an initial velocity Vo = yvo into a region where

both an electric field and a magnetic field B exist. Describe the motion of the
electron if £=ZE, and B =XxB.. Discuss the effect of the relative magnitude of
Ey and B, on the electron paths in parts.

-

(Sol.) m% = —e(E+vxB),

ov,
ot v. =0
E = 2Eo aV e Eo Eo
-~ = <{—>=——Bo, = v, =(v, ——)coso +
B = )%Bo ot m Bo Bo
Eo . e
ov, :—i(Eo—BoV ) v, =(—-v,)sinot,w, =—Bo
ot m 7 R, m
x=0
(If v, # £, ) c E E c c
v 2 0 0 N2 2.\2 232
¢ =y =—"smo,+ t =S(v=—"20"+(z+-2)" = (-~
BO y a)() ’ B() (y B() ) ( a)() ) ( o )
z——Elﬂ—amwt)c =y, ——2
CUO (el 2 4 BO

Magnetic force due to B and I

F =gV xB=dF, =dq%xl§:%d2x§=hﬁxl§, SO F, =I§d2><B

Eg. Determine the force per unit length between two infinitely long parallel
conducting wires carrying currents /; and 7, in the same direction. The wires are

separated by a distance d. [?%“\?u?‘?ﬂ

]
3

7.

I — ~ T
Folt o= ptlila 0

Sol.) F,'=1,(2xB,,), B, =-%
( ) F, ,(2 12) 12 x27rd 2

] I

=

S — i

- —— v

|
I
|
1
5
N

=
T
=%
|
-




Eg. Calculate the force per unit length on each of three equidistant, infinitely
long, parallel wires d apart, each carrying a current of / in the same direction.
Specify the direction of the force.

fﬂolz

(Sol.) 1,=1,=1,=1, B, =%2B,, cos30" =
27ed

, fy=—2IxB,=-JIB, =

fluo
27d

Eg. The bar AA’, serves as a conducting path for the current / in two very long
parallel lines. The lines have a radius b and are spaced at a distance d apart. Find
the direction and the magnitude of the magnetic force on the bar. [f| IL [?Jﬁfﬁ‘]
(Sol.) RIS LR A;?-iéff-’?i’._EBTf’

2 Mol 1 7 i
B = — , dl = pd
472' (y d— y) yay AR E s s el T T TR —l—

_ o _ b J?
:>dF=]d£><B=—fcﬂ° (l+ )dy:>F=Ld bdpz_)e”zo In(—-1)
T

47 'y d-y
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1
Scalar electric potential function: V = —_m.ﬁ dav'
drme 7 R

Vector magnetic potential function: A= ij. _[ ji av'
4z 77 R

Retarded potentials:

V(R,t)_ J‘J‘J‘P(I R/V)d,’ A(R,1) = ,uj'“' J(t— R/v)




1-5 Faraday’s Law and Magnetic Dipoles

Faraday’s law: Vsz—a—B or igE-dz:—”a—B-a@
ot v s Ot
CvxE=-P o Cwidy=svxE+ D0
ot ot ot
L ynulfills B+ - vy povr-A
ot ot
. - o . = 04
Note: In static field: E =—-V/V , but in time-varying field: E=—VV—E
Emf: V:§E’-df.Magneticﬂux: @zﬁg-dg, §E~d@=—”@-d§:>V:—d£
& v s Ot dt

Motional emf: V'= §(v xB)-dl (Volt)
C

Eg. A circular loop of N turns of conducting wire line in the xy-plane with its

center at the origin of a magnetic field specified by B = 2B, cos(7w/2b)sinwt ,

where b is the radius of the loop and o is the angular frequency. Find the emf
induced in the loop.

2
(Sol) @=] (2B, cos(")sin(an)] - [22mdr] = 22— (Z ~1)B, sin(ar)
0 2b T 2
V= _Nd® = —8—Nb2 (£ -1 B,wcos(wt)
dt V4 2

Eg. A metal bar slides over a pair of conducting rails in a uniform magnetic field

B =ZB, with a constant velocity v. (a) Determine the open-circuit voltage V)

that appears across terminals 1 and 2. (b) Assuming that a resistance R is
connected between the two terminals, find the electric power dissipated in R.
Neglect the electric resistance of the metal bar and of the conducting rails. [~

fEr PRI

(Sol). (a) v, =¥, -, =J.21:(fcvx£Bo)~()7dl)=—vBOh ")




h

(b) R:12R=(%)2R:M

R (")

~ . 2
Eg. The circuit in Fig. is situated in a magnetic field B =23 cos(57z107t—§7zx)

uT. Assuming R=15Q), find the current i. [f| 1| [$ZEI 5]

0.6 7 2 -6 : s
(Sol.) @ = j 3cos(57x107 ¢ == 26)107° - (0.2dx) R ¥ )
0 3 " 2 B S g
) a] @ " oy
o ——  — -ilhiml- —— J -
V= —ii£= 45[cos(571><107t—§ﬂ0.6)—cos(57z'109t)] : ,
t
4 . 7
i=—=1.76sin(5710"¢t—-0.27)
2R

Eg. A conducting sliding bar oscillates over two parallel conducting rails in a
sinusoidally varying magnetic field B =Z5cos(wt) T. The position of the sliding
bar is given by x=0.35(1-coswr), and the rails are terminated in a resistance R=0.2
Q. Find i.

(Sol.) @ =5cosar-0.2(0.7—x), x=0.35(1-coswt), i= —%%
=i=1.75wsinwt - (1+2coswt)

Eg. The Faraday disk generator consists of a circular metal disk rotating with a

constant angular velocity ® in a uniform and constant magnetic field of flux
density B =ZB, that is parallel to the axis of rotation. Brush contacts are the

open-circuit voltage of the generator if the radius of the disk is b.
B,b’

(Sol) V, = §(#xB)-dl =| "[(,r@)x 2B,]-(a,dr) = @B, j: rdr = )




Magnetic dipole moment: m =ZIS = Zm, where S is the area of the loop that carries
[ and m=IS.

Vector potential of a magnetic dipole: A= % ,  Wwhere
Vs
- -~ fm (. A
B=VxA4="—""—\a,2cos@+a,sinf
4R’ ( * ’ )

Eg. For the small rectangular loop with sides @ and b that carries a current /.

Find the vector magnetic potential A at a distant point P(x,y,z). And determine
the magnetic flux density B and A.[% %3 i ey : B

(Sol.)

A= m , where m=Iab, B = Vxﬁ—ﬂ"—3(AR2cosﬁ+&gsin0)
47R* 4R

AV —

2.

Magnetization vector: M =]im~>

AV—0

(4/m), where m, is the magnetic dipole

moment of an atom.

L Mxa — M
dd =M gy Mo e Ly = Mo | Ly —vnd M
47R* Iy R™ 4r|R R

vXMd. 4, ” VX[ Jd ([[[v<Fdv =~f{F xas')

4ﬁJIJVXMd , yOﬁM;an 4s'

". Magnetization volume current density: J =VxM (A/m?)

Magnetization surface current density: |J,, =M xa,| (4/m)

Equivalent Magnetization Charge Densities:

i 7 . 1 gPea' ., 1 i=VP),
V"’:is, MRan a5 J‘”_(VR%M)M' (Note: V:47r50§:f I;ldS+47rgg '[;“-[ (R )dV)

[

Define the magnetization surface charge density as |p,, =M -a,| and the

n

—_—

magnetization volume charge density as |p,, =—-V-M




Eg. A circular rod of magnetic material with permeability u is inserted coaxially
in the long solenoid. The radius a of the rod is less than the inner radius b of the
solenoid. The solenoid’s winding has n turns per unit length and carries a
current /. (a) Find the values of B , H , and M inside the solenoid for r<a and
for a<r<b. (b) What are the equivalent magnetization current densities J,, and
Jms for the magnetized rod? [?%“\”_Fﬁ?ﬁ”ﬂ

(Sol) (@) r<a: H=2nl, B=2ml, M =2 —H =2+ 1y,
Ho Hy

a<r<b: ﬁ=2n], 73=2,u0n], M=0

(b) J, =VXM =0, Jn =M xa, = (2xa,)(“=~Dnl = a,(X= 1yl
Hy Hy

Eg. A ferromagnetic sphere of radius b is uniformly magnetized with a

magnetization M =:iM o+ (a) Determine the equivalent magnetization current

densities J , and T s (b) Determine the magnetic flux density at the center of

the sphere. [‘F' }“\’_Fﬁﬁﬁﬂ

(Sol) (a) J,, = VXM =0, Ju =(d,cos0—d,sinO)M, xa, =a,M,sin0

- in9)* - M o
(b) dB=steUnbdOOSNOY . uM, sy =2 sin 040 = 22 .
z(bZ)% 2 2 90 3

Eg. Determine the magnetic flux density on the axis of a uniformly magnetized

circular cylinder of a magnetic material. The cylinder has a radius b, length L
and axial magnetization M =M. I’F","\?’JTF'JI]

—

(Sol) J, =V'XM =0, Ju =M xa, =(2M,)xa, =a

= L Ly M b’dz' B
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Eg. A cylindrical bar magnet of radius » and length L has a uniform
magnetization M =M , along its axis. Use the equivalent magnetization charge

density concept to determine the magnetic flux density at an arbitrary distant
point. [% ‘*\”_Fﬁf*:fﬁ’?] :
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M,, top
(Sol) p,. = M- a, =1—-M,, bottom, p,=0 in the interior region .,
T
0, sidewall < B
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, where M, =b’LM,

= H My ,
B=-u,VV, =TR3T(aR20056’+a9 sin@) (T)

Consider an infinitely long solenoid with » turns per unit length around to create a
magnetic field; a voltage V1=—nd%t 1s induced unit length, which opposes the

current change. Power P;=-VI per unit length must be supplied to overcome this

induced voltage in order to increase the current to /. The work per unit volume

B
required to produce a final magnetic flux density B¢ is W :J.o "HdB .



