Chapter 4 Selected Topics for Circuits and Systems

4-1 Poisson’s and Laplace’s Equations

Poission’s equation: V-¢E = p= V¥ =-£

&

Laplace’s equation: If no charge exists, p=0, V?V =0

Eg. The two plates of a parallel-plate capacitor are separated by a distance d and
maintained at potentials 0 and V. Assume negligible fringing effect at the edges,
determine (a) the potential at any point between the plates, (b) the surface charge
densities on the plates. [[& X EH] '

(Sol.) %:o:vzclyﬂz, V(y=0)=0, V(y:d):VO:>V:\;—°y =
y

T &

- .dv LV .= p
dy Vg rEn = &
~ ~ PV
Atthe lower plate: a, =Y, o4 = — q
At the upper plate: &, =-y, p, :g:j/_o

Eg. The upper and lower conducting plates of a large parallel-plate capacitor are
separated by a distance d and maintained at potentials V, and 0, respectively. A
dielectric slab of dielectric constant ¢, and uniform thickness 0.8d is placed over
the lower plate. Assuming negligible fringing effect, determine (a) the potential
and electric field distribution in the dielectric slab, (b) the potential and electric
field distribution in the air space between the dielectric slab and the upper plate.

[E K]

(Sol.) Set Vg (y)=cyy+c,,Eq =—Y¢;, Dy = —Ys0z,C,
Va(Y):Csy"‘CwE :_9C31Da =—§/80C3

V4(0)=0,v,(d)=V,, V,(0.8d)=V,(0.8d), D,(0.8d)=D,(0.8d)

:>Cl=(08V—O,C2=O,C3=gr—VOd,C4=M

8+0.2¢, )d (0.8+0.2¢,) 1+0.25¢,
5yV, = .5V, 5,y —4(e, —1)d _ . 5¢V,
V=290  E, =—§—2_ (b)V, = V,, E, =-§—orfo_
(@) V. Gro)d " Vlate ) () Gre)d Y4521



Eg. Show that uniqueness of electrostatic solutions.

(Proof) Let V; and V, satisfy V2V, = ~ £ and VYV, = _ P Define V4=Vi-V,,
& &

VAV4=0
1. On the conducting boundaries, V4 =0=V=V,
2. Letf=Vy, A=VVy

V-V, WV, )= V-(fA)= 1V A+ A-VE =V, VAV, +[VV, | = B9V, )-8,0s = [[]IvV, [ dv
s v

A 2
R wV, =V, -V, oc%,VVd oc%,dSoc RZ = ﬁ(VdVVd)'ands -0, .. IJHVV(J dv=0=

Vd :0:>V1: V2
" Image Theorem P(x,y,z) in the y>0 region is
\E;.-—, \~-h -~
- EYY Vin= 2 (2 1), where g, and
i NS A M 4reg R, R » Where R. and R. are

the distances from Q and -Q to the point P,
respectively.

Eg. A point charge Q exists at a distance d above a large grounded conducting
plane. Determine (a) the surface charge density ps, (b) the total charge induced

on the conducting plane. [32 K¢ EBAT]

= . Q - 5 Qd
Sol) E,,,=—Y——-2sin0 =—
( 0 ) [y=0 y47Z'80R2 y

3/2

27e,(d? + 1)

- Qd -
@) p, =96, =—ma (b) _L ps2zardr = -Q

Eg. Two dielectric media with dielectric constants ¢; and &, are separated by a
plane boundary at x=0. A point charge Q exists in medium 1 at distance d from
the boundary. Determine Q; & Q. (Q & -Qi in medium 1, or Q & Q; in
medium 2)

Q _ Ql \V/ (X — 0) — Q + QZ
v Vo
brgNs® +d%  drg s’ +d? drg,NS® +d°
ov, ov,

VizVo, & Do, Ve gpxo05 "R 4
OX OX & &,

(Sol.) V,(x=0)=

, and

&y, =&

Q+Q1:Q+Qz:>Q1:Q2:

&y, + &



Eg. A line charge density p, located at a distance d from the axis of a parallel
conducting circular cylinder of radius a. Both are infinitely long. Find the image

position of line charge.

Sol.) Assume p. =—p,,V =—| Edr = — dr = —— fn
(Sol) pieTp ;[ 27[50 ;f 27[50 r
=V, = Popplo Pl Py B
2re, ¢ 2me, N, 2me, ¥
. d, ?
r a d d
/“_\\

(a) Line charge and parallel conducting cylinder. (b) Line charge and its image.

Eg. A point charge Q is placed at a distance d to a conducting sphere. Find its

image.
//’ e M
/ a r.\ r
Q \ Q
® #
d =!
¢ é R N

(a) Point charge and grounded conducting sphere. (b) Point charge and its image.

-d 2
(Sol) vy =202 )00 --R 2520, 2 d_a_4_ 2
dmeg \ TN r Q d d d-a d d




4-2 Boundary-Value Problems in Rectangular Coordinates

RV LYY

V& = + +
x* oyt ar®

=0 Let V(x,y,2)=X(X)Y(Y)Z(2), kx*+ky*+k,*=

—

d2X(x d*v(y d°z(z
s raxm=o, T vy =0, T a()-0

For X(x), 1. kx*=0, X(x)=Aox+By is linear.

2. ky?>0, X(X)=A1sinkyx+B1coskyx, X(x=a) is finite, X(x=b) is finite
3. ky*<0, X(X)=Assinhkyx+B,coshkyx, X(c) is finite, X(-o0) is finite
Similar cases exist in Y(y) and Z(z).

Eg. Two grounded, semi-infinite, parallel-plane electrodes are separated by a
distance b. A third electrode perpendicular to and insulated from both is
maintained at a constant potential V. Determine the potential distribution in the
region enclosed by the electrodes. [E%]

T V=0 —_—

(Sol.) T
V210X 00 2

- V(0,y)=V,,V(x0)=0 G =
BC.l y (e, y)= 0,V (x,b) =0

2

d d>§ (X) — kfx (X) : X (X) — DlekXX + Dzekax — Dzekax

X
d*Y(y)

a = KY)=Y(y)=Asink,y

—KkyX i _ _ nz —
=V, (x,y)=Ce ™ sink,y =k, =k, =" =123

=V, (x,y)=C,e ® sin nTﬂy

v (o, y)=V0:i CnsinnTﬂy

n=1
b . omay = b . nNay . may
J.Ovosdey—nZ:;an'o sstm—dy

b
{va",m:odd {C”,m:n
=< mrx =4 2

0,m:even O,m=#n

4,
—>,n:odd
:scn:{n,[ n:o

0,n:even

V(x,y)= Mo Zle_T sin™® n =135, for x>0, 0<y<b.
7 noddN b



4-3 Boundary-Value Problems in Cylindrical Coordinates
1 a( avj 1 0%V azv_o

VAV == —|r— [+ —+—
ror\ or r-o¢g° oz

2

1. Assume aav =0, then V(r,p)=R(nN®d(p),

—=
z
2 2
= Rgr)+ dR() n’R(r)=0, a70ly) ®£¢)+ n*®d(¢)=0
dr dr
—R(N=Ar"+B 1", ®(p)=A,sinng+ B,cosng
—Vn(r,0)=r"(Asinng+Bcosnep)+ r"(A’sinng+B’cosng), n#0

»V(r,w):zfvln (r.¢)

2
2. Assume n=0, ddcz(¢)—0:>cl>(¢):Aogo+Bo, R(r)=Colnr+Dy,

=
In the p-independent case, V(r)=CiInr+D;
In the p-dependent case, ®(¢p)=Ap+B, V(r,p)=(CInr+D)(Ap+B)

Eg. Consider a very long coaxial cable. The inner conductor has a radius a and is
maintained at a potential V. The outer conductor has an inner radius b and is
grounded. Determine the potential distribution in the space between the

conductors. [E{E%5%]
(Sol.) V(b)=0, V(a)=V, = C,/n(b)+C, =0, C,/n(a)+C, =V,

\Y V, Inb

In(b/a)

In(b/a)’ "




Eg. Two infinite insulated conducting planes maintained at potentials 0 and V
form a wedge-shaped configuration. Determine the potential distributions for the

L (a)O <p<a . .
regions: (D)o < 6 <27 [FIRILERT ~ BEXER] g -
o) P .
(@) V(p)=Ap+B, ==
V(0)=0=B,=0 y
{V(G)Vo%a:'%\;—():v(qj)_ $0<g<a
(@)=V, = Aa + B, Vo 27V, V,
(b) {v(zn —0=2mA+B A5 Bi=o— =V(g)= zﬂ_a(zﬂ—qé),

a<l¢<2rn

Eg. An infinitely long, thin, conducting circular tube of radius b is split in two
halves. The upper half is kept at a potential V=Vo and the lower half at V=-Vo.
Determine the potential distributions both inside and outside the tube.

(Sol.) v(b,¢)= {VO,O <¢p<nx

Vo <p<2r
(a) Inside the tube:
r<b=V,(r,¢)= Ar'sinng =V(r,¢)= i Ar"sinng

z V,,0
r=b=> A1b"sinn¢={ W0<g<z
n=1

Vo <¢<2rm

o ,n:odd
= A =nb"
0,n:even

:>V(r,¢)=ﬂ i %(%)nsin ng,r<b

7T n=odd

(b) Outside the tube: r>b=V,(r,¢)=B,r"sinng =V(r,¢)= i B,r"sinng

© V,0<g<
r=b=> Bb'sinng=1" bz
— Vo <¢<2r
&,n:odd
SBn: nx
0,n:even

:>V(r,¢):% i %[%jnsin ng,r>b

7T n=odd



Eg. A long, grounded conducting cylinder of radius b is placed along the z-axis in

an initially uniform electric field E = xE,. Determine potential distribution

V(r,p) and electric field intensity E(r,4) outside the cylinder. Show that the
electric field intensity at the surface of the cylinder may be twice as high as that
in the distance, which may cause a local breakdown or corona (St. EImo’s fire.)

[FFRIEEFT ~ HH5]

(Sol.) V(r,¢)=—E0rcos¢+iBnr’" cosng (At r>>b, E=RE,, V=—E,rcosg)

n=1

At r=b:V(r,¢)=-Egcosg+> Bb"cosng=0=B, =Eh* B =0 forn=1.

n=1

2

b
Outside the cylinder, =b:V(r,¢)= —Eo{l—FJCOS(ﬁ
- b? b
E(r.p)=-VV =4E, (r—2+1jc05¢+é¢Eo [r—z—ljsin 7

Eg. A long dielectric cylinder of radius b and dielectric constant &, is placed
along the z-axis in an initially uniform electric field E = XE,. Determine V(r,p)
and E(r,#) both inside and outside the dielectric cylinder.

(Sol.) For r>b, Vy(r,¢)=—E,rcosg+» Br"cosng

n=1

r <b, Vi(r.¢)= Y Arcosng

Vo(b’¢)=vi(b’¢) _ EOb + Blb_l = Alb’ Bnb_n = Anbn’ n=1

oV, . N,
o o, Eg+BbT=-gA, nBb " =—gnAb" n=1
-1 0
Al :ﬂ B — gr _1b2E V0 (r,¢)=_(l_ﬁ'F]E0rcos¢
= o +1 ’ ! &, +1 0 ) r
A, =B,=0for.n=1 Vi(r,¢)=—g —Eorcosg

r

= _a & -1 b’ R g -1 b
_ . av R av EozarEo(l-i-g +1-r_2]COS¢—aIEO(1—g +1.FJS|n¢
E=-VW=-a—-a,— "
or rog . o
Eo(arcos¢—a¢sm¢)

¢ +1

r



4-4 Boundary-Value Problems in Spherical Coordinates
2
S A L B o e
R 0R OR) R®sing 06 00) R7sin“@ o¢

2

Assume ¢-independent: =0, V(r,0)=R(nNO(0)

62

dr? dr do
k2=n(n+1)— R(N=Anr"+B,r"* ©(6)=P,(cost)—V(r,0)=[Anr"+B,r"]P,(cosd)

(2 d ?R(r) o dR(R) K?R(r)=0, i{sin ed(j—gg)} +n(n+1)0(#)sin(#) =0, and

Table of Legendre’s Polynomials

n P (cos®)
0 1
1 cosd
2 l(3 cos? 6 — 1)
2
3 l(5cos3 0 —3cos 49)
2

Eg. An infinite conducting cone of half-angle a is maintained at potential V, and
insulated from a grounded conducting plane. Determine (a) the potential
distribution V(@) in the region a<f<ma/2, (b) the electric field intensity in the
region a<f<m/2, (c) the charge densities on the cone surface and on the grounded

plane.
(Sol.)

I 6o 0N - S _yg)=cum[anl|+c,
do dé siné 2

V(a)= len(tan “) +C =V, v, { (eﬂ ’
(a) 2 = kn{tan[%ﬂ = e n| tan| 2 2
V(ZJ = Clm(tan Zj +C,=0 ¢ -0 fn[tan(%ﬂ

O=a:p, =£OE(0:)=¢
— . av - Vv, a)l .
E=-a —=-a R¢n| tan| — | |sin@
(b) 0 RdO 4 a , (¢) 2
R(n{tan(ﬂsin& v
2 QZZ:Ps:_goE[”j:_ &9Vy



Eg. An uncharged conducting sphere of radius b is placed in an initially uniform

electric field E =ZE,. Determine the potential distribution V(R,#) and the

electric field intensity E(R,#) after the introduction of the sphere. [H 1L Z&H]

(Sol)) v(b,6)=0 _ _
If R>>b,V (R,0) = —E,z = —E,Rcos 6 T Bt
o0 .'.T
V(R,0)=>[AR"+B,R ™I (cosd), r>b g H\ BELEag j |
" SO
(A=onsi SR 7
A=-E = =
M o NN
¢ LT
SeALEP T
] = : \ |

:—EORPl(cose)+iBnR‘(”“)Pn(cose),RZb EdEnesiil R
n=0

('sphere is uncharged, B,=0)

v

= [%— EOchose +Z:: B,R""P (cosd),R > b

R=b, oz(Bl —EOchose+z B,b-"P (cos@)= B, = E,b®, B, =0, n>2,

W2
b n=2

3
. V(R,0)= —E{l—(%) }Rcos&, R>b

= ,\ A ~( oV 4 oV
E(R,0)=2azE E,=-VV(R,0)=a,| —— -
( 79) agtg + 8,k ( !‘9) aR( aR]"‘ae( R@G}

b’ b’
= éREO|:1+ 2(—) }cos@—éﬁ{l—(—) ]sin 0,R>b
R R

A dipole moment P = Z47eb’E, is at the center of the sphere. Surface charge

density is 2.(0) = &Eq ., = 36,E,c0s6



4-5 Capacitors and Capacitances

Q=CV< C=Q/V
Eg. A parallel-plane capacitor consists of two parallel conducting plates of area S
separate by uniform distance d, the space between the plates is filled with a
dielectric of a constant permittivity. Determine the capacitance.
Sol) p, =2, E=—§&=—§% ; 1 poewe "
S g £ T +F_ z ZE(I\J
|

=42 > d A Q A Q |:—h bl ) :
v :_Iyy=0 E-dl :Io (_ yg](ydvj :Ed \/U. L é s

Hl

= Surface charge densities on the upper and conducting planes are ps and -ps,
ps=eEy=eV/d.

Eg. The space between a parallel-plate capacitor of area S is filled with dielectric
whose permittivity varies linearly from &; at one plate (y=0) to &, at the other
plate (y=d). Neglecting all the edge effect, find the capacitance. [&FIKREFAT]

(Sol.) Assume Q on plate at y=d, &= &~ &

y+eé&

E=yP p=Qovo [Eai-E/e) o Q_SE,-e)
&

s S(e, —¢,) % dIn(%2)
&

Eg. A cylindrical capacitor consists of an inner conductor of radius a and an
outer conductor of radius b is filled with a dielectric of permittivity ¢, and the
length of the capacitor is L. Determine the capacitance of this capacitor.

C O 2melr
V, =—["Edl=—[[a -2 (efr(zlr)=ilnR - _ 2
b o\ " 27eLr 27l | a



Eg. A spherical capacitor consists of an inner conducting sphere of radius R; and
an outer conductor with a spherical wall of radius R,. The space in between them
is filled with dielectric of permittivity &. Determine the capacitance.

(Sol) E=a E —a 3 gy

r 47T8R2 ..//" Dielectric, e-\.‘\_\

L [ @ n\ \1|

: | : | |

:_I E'(ar de:_I Q 2CIR: Q 1 1 & Jl ;IJ

R, Ro 47Z'¢C,R 472-8 Ri RO \\ 4 ./

ey
Q4
c-2-

R R

For an isolating conductor sphere of aradius: R, , R, = o, C =47eR,

Eg. Assuming the earth to be a large conducting sphere (radius=6.37x10°km)
surrounded by air, find (a) the capacitance of the earth, (b) the maximum charge
that can exist on the earth before the air breaks down.

(Sol.) (@) C =4re,R =4nxix1o-9 x6.37x10° x10° )= 7.08x10™* (F)
0

67
Quax
4re,R?

(b) E, =3x10° = = Q,,, =1.35x10° (C)
b Max

Eg. Determine the capacitance of an isolated conducting sphere of radius b that
is coated with a dielectric layer of uniform thickness d, the dielectric has an
electric susceptibility ye.

(Sol) b<R<b+d, E=a, Q _  bid<r E=— 9
47&90(1+ Xe )R 4re R

V:—JbE-dT: Q [Ie +1j CZQZM

- 4rgy(L+ y,)\b+d b Vv Ze 1

b+rd b

Eg. A cylindrical capacitor of length L consists of coaxial conducting surface of
radii r; and r,. Two dielectric media of different dielectric constants ¢,; and &,
and fill the space between the conducting surface. Determine the capacitance. [&

RYIEFT ~ B BT
(Sol) arl(e,e,, +&,6,)E=pL=E=

fi P fo
V=—| Bdr=—F———In| %
J.r" r ”go(grl +5r2) n( f J

C= oL _ ”go(‘grl +‘9r2)L

Vv In(r, /r.)




Eg. The radius of the core and the inner radius of the outer conductor of a very
long coaxial transmission line are r; and r, respectively. The space between two
conductors is filled with two coaxial layers of dielectrics. The dielectric constants
of the dielectrics are & for ri<r<b and &, for b<r<r,. Determine its capacitance
per unit length.

(Sol.) El:aArL I <r<b, EZ:aArL,b<r<r0
2mE N 27EE, 1
r 2 - r
V:—IEdr: l iIn2+il(—°],
fo 2ngy| &, \ ) &, \D
P 27e,

Eg. Determine the capacitance per unit length between two long, parallel,
circular conducting wires of radius a. The axes of the wires are separated by a

distance D. [& K EH]

Py o8 P o

Sol) V, = m—, V. =——"/n—

(Sol.) V2 2re d Ot 27 d
2

c-_* id ,d=D—di=D—%, d:%(D+\/D2—4a2)

V,-V, n(d/a)

e e

S —
én[(D/Za)+ (D/Za)z—l} cosh *(D/2a) "

Eg. A straight conducting wire of radius a is parallel to and at height h from the
surface of the earth. Assume that the earth is perfectly conducting; determine the
capacitance and the force per unit length between the wire and the earth.

_ _ TTE, _ &y F
(Sol.) b=2h, € cosh™(D/2a) cosh‘l(h/a)(%”)




Eg. A capacitor consists of two coaxial metallic cylindrical surface a length 30mm
and radii 5mm and 7mm. The dielectric between the surfaces has a relative
permittivity &,=2+(4/r), where r is measured in mm. Determine the capacitance
of the capacitor.
(Sol) E-2, 2§Igr -7 4 - Are ?;+2)

272'80(2 + rjr 0

[ - r:?
V:—J E-dr=-2"In(r+2 =-p In(gj, C:p|_|_:471'80|_z150080
g 4dre, r=5 dre, \7 Vv |n(9}

7

Series or parallel connection of capacitance:

Cy C2 Ch Csr
| | | _____| _ | |
+0! -0 +Q! -0 +Q1 QO +Q1 QO
% > y—s
% = ¥ -
V=&=g+g+g+ ...... +_:>i=i+i+_+ ...... I
Csr Cl C2 C3 n Csr Cl 2 3 n
Cl
TQ' i Q:Q1+Q2+ ...... +Qn
=C,V=CV+CV +----- +CV
C2 =C,=C,+C, 4+ +C,
: +Q2' -0z Gy




4-6 Electrostatic Energy
To remove Q; from infinite to a distance R, from Q,, the amount of work required is

Q Q, 1
= Qe =Qup t = Qi =V =5 QM+ Q)
induction N N .
—mehod 5\, :12 QV,, where V, = : 9
244 7€, -G+ Ry

Eg. Determine the work done in carrying a -2uC charge from P;(2,1,-1) to

P2(8,2,-1) in the field E = >A<y+ glxalong (a) the parabola x=2y?, (b) the straight
line joining P; and P5.

—

(Sol) df = Rdx+ gy, W =—q[E-d I =—q-(] ydx+ xd)
(2) Along x=2y?, dx=dydy =W =—q| 6y’dy = ~14q = 28 ().

(b) Along x =6y -4, dx = 6dy =W = —q[ (12y - 4)dy = ~14q = 28 (1))

Eg. Find the energy required to assemble a uniform charge of radius b and
volume charge density p. [JE K ERF] ;

(Sol) V, = 4QR Qu = p iR

g4 R 3
2 Ar o4
dQi = p47R“dR, dW =V, dQ, =3—p R*dR
&o
2|5
Wz.[dwzﬂ’_”pzj'bR“dR:M
g, 0 15¢,

Ar 3Q°
—p e, W= 3
Q=r 20mep )




, _1 1 2 ,
Eg. According to We_E”L-deV = E_UL(V D)\/dv , show that the stored electric
. 1 - -
energy is W, = E”LD Edv
(Proof) " v-(v szvv- D+D-VV, .. VWW.D =v-(v Bj— 5.vv

W, =2 ([ vV B Jav-2 [[[B-vav=2ffv Do, ot L [[[B-Ean

WhenR»oo,soch,vocl,5ocizzlﬁvﬁ-a]dsaozwe=1MD-Edv
R'|"| " R? T 29% 2

11D =2 E, thenw, -~ [1[ lE] av m dv = [[[ w,av

Note: 1. Sl unit for energy: Joule(J) and 1 eV :1.6><10'ng.
2. Work (or energy) is a scalar, not a vector.

N

D

-

if:E

2 2¢&

Eg. A parallel-plate capacitor of area S and separation d is charged by a d-c
voltage source V. The permittivity of the dielectric is & Find the stored
electrostatic energy.

SIS ARV T ik

Eg. Use energy formulas to find the capacitance of a cylindrical capacitance
having a length L, an inner conductor of radius a, an outer conductor of inner
radius b, and dielectric of permittivity ¢ .

Electrostatic energy density: we:%D- E=

1 _ Q" pdr_Q° (b
(Sol) €= T B J (mu} LZMdr)_MgLL r _4;sz|n(aj’
Q_ < |n(9j:>cz 2l

2C 4zl \a |

Eg. Find the electrostatic energy stored in the region of space R>b around
an electric dipole of moment p.

_ P L . 1 P
(Sol.) E :ﬁ(a@coséuag sing), W :Ego'['[“Ede =12ﬁ80b3



4-7 Electrostatic Forces and Torques
Electrostatic force and torque due to the fixed charge:

dW =F..d I

o is mechanic work done by the system, it costs the stored energy.

N
| =

S AW, =—dW =—Fo-d | =(VW,)-d I, . Fy =—VW, (N)

o) W, 9(Q%)_Q° aC _ oW,
(FQl_ ol a[zc} 2C2 ol ' aw (TQ)zd¢:(TQ)Z o

Electrostatic force and torque due to the fixed potential:
dw, = YV, dQ, , dW =F,-d T, dw, =%kako =%de
k k

AW, =dW, =F.-d [ =(VW,)-d I

S

AW +dW, =dW, = dW =

N |-

I?\/ = VWe ! (Tv )z

2
Eg. Determine the force on the conducting plates of a charged parallel-plate
capacitor: The plates have an area S and separate in air by a distance x.

N 2 2
=6We ’ [FV) :aWe ZQ(ECVZJZ\/—QZ Q2§
o¢ | ol ol 2 ol 2C° d

(Sol.) (a) Assuming fixed charge, W, = %QV = %QEXX,

__9(1 __ @
(FQ)X - ax(zQExxj 2£,5

(b) Assuming the fixed potential,

2 2
(Fv)x=aWe =£ lez =V_£ £0S =_goS\£
OX ox\ 2 2 OX\ X 2X

. g, SV

;. Q=CV = OX o (Ry), =(R),
Eg. A parallel-plate capacitor of width w, length L, and separation d is partially
filled with a dielectric medium of dielectric constants &,. A battery of V, volts is

connected between the plates. (a) Find D, E, ps in each region. (b) Find
distance x such that the electrostatic energy stored in each region is the same. [&

R EEHH]

L i
_ AVo - R V. V d & — %o
=—y-2D =- _0, — 0 : T
(Sol) (ay 1 Vg T YRS e T fly ok |
) |
_ V- .V Vv w X L
E,=-Vy O!Dzz_ygo _O’pszzgo_o (b) —L = & =l=x=

d d d W, L-x e, 41



Eg. A parallel-plate capacitor of width w, length L, and separation d has a solid
dielectric slab of permittivity € in the space between the plates. The capacitor is
charged to a voltage Vo by a battery. Assuming that the dielectric slab is
withdrawn to the position shown, determine the force action on the slab. (a) with
the switch closed, (b) after the switch is first opened. [& X BT ~ J&E R EHH]
(Sol.) (a)

2 2
- - )z\ﬁ% = f(V_OW(
X ¢ 2 Ox 2d

6‘—6‘0)

Eg. The conductors of an isolated two-wire transmission line, each of radius b,
are spaced at a distance D apart. Assuming D>>b and a voltage V, between the
lines, find the force per unit length on the lines.

(Sol.)

E=g- 2 4+ P ,VO:V1—V2:IE‘bE-d>?= PnP=b 2D
27e,x  276,(D —X) g, b g, Db

e, V oC' _ o 7N ’

_ P _ _
“v g T T T o F




4-8 Resistors and Resistances

Ohm’s law: V=RI
szf:Ezl,l:HJ‘-dS?:JS:»J:l:a!:»vz )i =R
/ : S / oS
B R=£, G=£=0'§
oS R ¢/

Power dissipation: P =IIIE-Jdv:IE -d?”j-d§ =Vl =-I°R

Eg. A long round wire of radius a and conductivity ¢ is coated with a material of
conductivity 0.16. (2) What must be the thickness of the coating so that the
resistance per unit length of the uncoated wire is reduced by 50%? (b) Assuming
a total current I in the coated wire, find J and E in both the core and the coating

material. [ERIAE T

1 1
Sol) RR=—, R, =
(Sol) R, om’' ° or[(a+b)?—a’]

(@ R =R, =>b=(11-1},

| I |
pyl,=1,=—, J, = =of,, J : 1=
byl =1, 2" ! bz 27[[(61+b)2—b2J

0.10E,
= J,=10J,, E, =E,

Eg. A d-c voltage of 6V applied to the ends of 1km of a conducting wire of 0.5mm
radius results in a current of 1/6A. Find (a) the conductivity of the wire, (b) the
electric field intensity of the wire, (c) the power dissipation in the wire, (d) the
electron drift velocity, assuming electron mobility in the wire to be

1.4x10%(m2/ V -s).

(Sol.) (a) R=é=\li:>a:%=3.54xlo7(s/m), (b)E=V7=6><10’3(V/m), (©)

P =VI =1Watt, (d) v, = uE =8.4x107°(m/sec)



Calculation of resistance:

vzv:o:v:E:—vv:Jzoézfzﬁjds:szu

Eg. A conducting material of uniform thickness h and conductivity &, has the
shape of a quarter of a flat circular washer, with inner radius a and outer radius
b. Determine the resistance between the end faces. [ X EH]

(Sol.) V =0,V=0at ¢=0, V=V, at ¢=%

2
IV _o, V=eipe,, v=2y, J"zoE:_avvz_épﬂ:_éq; 2oV,
dg’ 7 rog e
. v
|=LJ-ds=20V°h:$:20hV° In2, R:I—O:Lb
T r T a 20h|n(j
a

Eg. A ground connection is made by burying a hemispherical conductor of radius
25mm in the earth with its base up. Assuming the earth conductivity to ¢=10°
S/m, find the resistance of the conductor to far-away points in the ground. [3Z:X

BASFA]
I = | od

- b
Sol) J=a , E=4a,———=>V =—| EAR=—— o= 10~ (Sm
(Sol. R 27R? R 27oR? ’ 'L 27ob o

R=Ye o 1 _ _61 ——=6.36x10°.
| 27zob  27(107°)(25x107°)

Eg. The space between two parallel conducting plates each having an area S is
filled with an inhomogeneous ohmic medium whose conductivity varies linearly
from o1 at one plate (y=0) to o, at the other plate (y=d). And d-c voltage Vy is
applied across the plates. Determine the total resistance between the plates.

(S0l) J=—Jd=>E=Yo§-P | o(y)=oi+ (om0,
o o(y) d
V,=-['E-ydy= 2 o g Ve Voo 4oy
0 O:—O01 O1 | JOS (02—0'1)8 O1
?}‘
‘d
aly) A: 11/
Io Ay

¥
MArea = §



D-ds {f<Eds
Relation between R and C: C:g:iﬁs_. *=ﬁ_, =,
Vv —J.LEodI —JLE-dI

V_—jLE-di_—jLE’di [ aeC_e
G o

I {3 ds _ﬁsaidé’ o

Eg. Find the leakage resistance per unit length (a) between the inner and outer
conductors of a coaxial cable that has an inner conductor of radius a, an outer
conductor of inner radius b, and a medium with conductivity ¢, and (b) of a
parallel-wire transmission line consisting of wires of radius a separated by a
distance D in a medium with conductivity ¢. [ER} AR EHF]

(Sol) (@) C = Z”tf | Rzi(l}_L.n(Ej

a

®) co__ 7 | R =€(1j =icosh’1(22)
cosh™ (E) “ e 2
2a

Eg. Find the resistance between two concentric spherical surfaces of radii R; and
R, (R1<R;) if the space between the surfaces is filled with a homogeneous and
isotropic material having a conductivity o.

4re RC=% = Rzl.ﬁ = R:i(i_i)

1 1 o C o 470 R1 R

Rt R2

(Sol) C=



4-9 Inductors and Inductances
Mutual flux: @,, :” B, dS, =L,l, (Wb)
S

N, D, =ﬂ (H)

1 I1

General mutual inductance: L, =

A
Self-Inductance: L, = I—“
1

Eg. Assume that N turns of wire are tightly wound on a toroidal frame of a
rectangular cross section. Then, assuming the permeability of the medium to be
uo, find the self-inductance of the toroidal coil. [& A EW]

(Sol.)

L 3 NI
dl =4,rdg, §B-dl = Brdg=2mrB=yu,Nl =B="2"
2 2nt

NIh wdr ONIh _No _ puN*h b
R [ (—) A T

Z>CD:J.SJ-I§.d§: 2T ar N 2 a

Eg. Find the inductance per unit length of a very long solenoid with air core
having n turns per unit length. And S is the cross-sectional area.

(Sol.) B=pu,nl, ®=BS =unSl A'=nd=yn’Sl, L'=pun’S

Eg. Two coils of N; and N, turns are would concentrically on a straight
cylindrical core of radius a and permeability . The windings have lengths I, and
I, respectively. Find the mutual inductance between the coils.
N
(Sol.) @, = ﬂ(?l)(ﬂaz)ll, A =N,y =€ﬁN1N27Z8.2|1
1

1

A
=L, zl_lzzfﬁNlNz”a2

1 1

Eg. Determine the mutual inductance between a very long, straight wire and

a conducting circular loop. [&REBIF ~ FAYIHEEFT]

(Sol.)
Batpis #o|
27 (d + rcosé)

,u0 rdéedr Uyl o 27rdr 7 2
A= = =u,l(d—-+d“ =D
-[ -[ d+rcosd 2r JO N e ( )

L=uo(d—4d2—b2)




Eg. Determine the mutual inductance between a conducting triangular loop and
a very long straight wire.
(Sol.)

B,=4 ”OIZ,A=®:IB-d§, where dS =4, zdr
¢27Z'r s (]

z=+/3(d +b—-r)

\/§ﬂ0 I
2r

A=Y j“”’l(d +b—r)dr = */_”0 NSHol 1(d +b)In(L+b/d)—b]

d fo—d + n—-{

A:@[(d +b)In@+b/d)-b]
| 2

Eg. Determine the mutual inductance between a very long, straight wire and a
conducting equilateral triangular loop. [E%]

(Sol.)
=_ 2 Mol _ 2
B=a, 2ﬂr:ad}Bm <I
A= j‘”* (r—d)d _ ‘/— ‘/—b '
\/_
_A_u \/_ J§b)]
|~ 3 2d

Eg. Find the mutual inductance between two coplanar rectangular loops with
parallel sides. Assume that h; >> h, (h, > w; > d). (& XKEBWH)

(Sol.) .
A, = Loh, | Iwz 1 1 dx — Hoh,l In(W2 +d  w, +d
2w d+x w+d+Xx 2 d w+w,+d :
_Ap (w, +d)(w, +d) X
he = | _277 [d(w+w +d)] e
= d

N,N 7.dv vy
Neumaun formula: lezﬂo 172 §§§d£ld€2

Ar &6, R
N, D N - N N -
Lip=—2—2 = "2 [[B,-dS, =~ 2 [[(Vx &)-dS, == § A -d7,
1 1 s 15, 1 ¢,




Eg. A rectangular loop of width w and height h is situated near a very long wire
carrying a current i;. Assume i; to be a rectangular pulse. Find the induced
current i, in the rectangular loop whose self-inductance is L.

(Sol.)
di, |, di, ..
—1_|L=-24Rij,,
2 dt d  °
where L, :&ZQJ‘MW Holy dr = Hoh In(l+ﬂ) A m—:_
i, Qg 2ar 2 d 1 |
_ o S
t=0, LI 4RI, = L 1,5() =i, =210
dt L
RT e
t=T, I, = Liz I.e &, when-I; is applied
Ry |
t>T, i, b l.e e




4-10 Magnetic Energy
N 1 L
ZLJk o= ZIKQK:EIJIA-JdV

2973 2id v’
Let V, =L di, W, = [Vidt =L [“idi, =117 = S 1@, - Magnetic ener

1= 1E:> 1_J-11 _1.[011_5 11_51 1° g gy
- di,
Similarly, V= Ly 2 =Wy, = jv21|1dt_|_21|1j di, = L, 1,1,

2 2
And W, =%L2|§ =W,_ :%Lllf + Ly 1,1, +%L2I22 :%ZZijljlk

N N
Genera”y, Wm :%zz ijljlk =%Z|k®k when (Dk =Z'—jk|j

LW :%imk A-dl‘kz—jﬂA.Jdv' (Al dl,'= J(A4,")dl,"'=J -v,")
"V (AxH)=H - (VxA) -A-(VxH)= A-(VxH)=H - (VxA)-V-(AxH)

And J=VxH :A-j:H-B—V.(AXﬁ)

wm:%mﬁ.de'_%g(/xxm.ands' s Rows|fas,  [A[xs

dS o R? :——ﬁ(AxH) 4.ds'— 0

=—IHH Bav' _“ w,, dv'

W, = lh.s
2
: o B
Magnetic energy density: w,, =
2u
1
Wy, =S U | H |2

2



Eg. Determine the inductance per unit length of an air coaxial transmission line
that has a solid inner conductor of radius a and a very thin outer conductor of

radius b. [ERA B . o
(Sol.) e —— o

1 12 |2 \@j
W= —— [ B22ardr = 20" [*r3dr = 2o
o ! o
241,

4’ " 167

I° I°
W= LJ'bBZZZanr:’u0 "Lor ol b ,
24, 2 Az ‘ar Ar a
.2 Ho | Mo, Db
L'=— +W_,)="—+"—In—
|2(Wml ) 87 27 a

Eg. Consider two coupled circuits having self-inductance L, and L,, which carry
currents I; and I, respectively. The mutual inductance between the circuits is M.
a) Find the ratio 1,/1, that makes the stored magnetic energy W,, a minimum.

b) Showthat M <./LL, . CEAR AT

(Sol) W, =%|_1|12 + M1, +%L2|§

12 2 I

(@ W, :—Z[Ll(l—l)z+2M(|—1)+L2]:|—2[L1x2+2Mx+ L,], x=-1%
2 I, I, 2 I,
2
d:ij =0:|72(2L1x+2M):>x=:—1=—M for minimum W,
X 2

) W= M4 1) 205 M < LT

1
4-11 Magnetic Forces and Torques

Force due to constant flux linkage:
oW,
o¢

Fy-dl=—dW, =—(VW,)-d? = F, =YW, and (T,), =~

Force due to constant current:

dw, =Y 1,'dd, =dW +dw,
k

dw,_ =%Zlk®k =%dws =dW =F, -dl =dW,_ =(VW,)-dl = F =VW,
k

Torqgue in terms of mutual inductance:
1

1 0
W, =§Ll|12+L12|1|2+EL2|22:> Fio=1L1,(VL,), T, = |1|28i¢2



Eg. One end of a long air-core coaxial transmission line having an inner an
conductor of radius a and an outer conductor of inner radius b is short-circuited
by a thin, tight-fitting conducting washer. Find the magnitude and the direction
of the magnetic force on the washer when a current I flows in the line.

(Sol.) wm=1u2,L=9=5f’B _—j Hol g _”0 In2
2 a a
2
Rt g% gl dy

Eg. Acurrent | flows in a long solenoid with n closely wound coil-turns per unit
length. The cross-sectional area of its iron core, which has
permeability g, is S. Determine the force acting on the core if it is
withdrawn to the position. [5% B & Efi]

(Sol.)

_1 2 _ 1 22 1 212 _1 212
Wm—EIIIyH e, W, (X-+ 80 =W () = (st 1717 =2 10" )K=t (11, =1’ 788

oW, _Ho ( )nzlzs
OX

:>(F|)x:

Magnetic torque: T=mxB  (B=B.+B;, m|| B.=>mxB.=0)

dT = XdF 2bsin ¢ = X(IdIB, sin #)2bsin ¢ = X21b*B, sin” gd ¢

T = [dT =%21b°B, [sin’ gd¢ = X1 (4°)B, = fmB,

Eg. A rectangular loop in the xy-plane with sides b; and b, carrying a current |
has in a uniform magnetic field B =B, + §B, + 2B,. Determine the force and
torque on the loop.

(Sol.) T=mxB=Ibb,(%B, - §B,)




4-12 Magnetic Circuits

Define V., = NI : mmf, @ = BS: magnetic flux, R = I—S: reluctance
U

(1) YN =Y RD () V-B=0,.. Y0, =0

Eg. (a) Steady current I, and I, flow in windings of N1 and N, turns, respectively,
on the outside legs of the ferromagnetic core. The core has a cross-sectional area
S¢ and permeability u. Determine the magnetic flux in the center leg.

(Sol.)

i]il:—ll , R, = , , Ry = I3
HSc HSc HSc

Loop1l: N, I, =(R, +R,)P, +R,D,

Loop2: N,I, —N,I, =R,®, + (R, +R,)D, ey
o - TN L RN, D
LOR R, +R R, +RAR, e

Pz

Eg. A toroidal iron core of relative permeability 30004, has a mean radius R=
80mm and a circular cross section with radius b=25mm. An air gap l;=3mm exists,
and a current | flows in a 500-turn winding to produce a magnetic flux of 10°Wh.
Neglecting flux leakage and using mean path length, find (a) the reluctances of
the air gap and of the iron core, (b) Bgand Hy in the air gap, and B and H¢ in
the iron core, (c) the required current I.

I 3x10°° 6 a

(Sol.) (@) R, = = — —~=121x10" (H™)
1#,S  Arx107" x (7 x0.025%)

%, - 27[0.08_7—0.003 __6.75x10° (H)

3000 % (47 x107") x (7 x 0.0257)
~ o~ -5 R B B
(b) By =Be=8, 2 _4509x10°(T) H, =—%, H, =_
7 x0.025 Ho 30004,

(© NI =®R, +R,)=1=00256 (A)



Eg. Consider the electromagnet in Figure. In which a current I in an N-turn coil
produce a flux @ in the magnetic circuit. The cross-sectional area of the core is

S. Determine the lifting force on the armature.

(Sol.)
B? ®?
dW,, =dW,,) e = 2(=——Sdy) = dy
o 2, HoS
S
L= N(D = RC+ #OS
[ |
o —dw, o d 1 1 NI
F, = n=— and F =y—(=LI?)=-y
0=y dy yﬂos ! ydy(2 : yﬂoS(Rc+2y/ﬂos)
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