Chapter 2 Maxwell’s Equations and Plane EM Waves

2-1 Dielectric and Conductor

Displacement vector: D=g, E+P=¢E=¢,(1+ y,)E = 5,5, E

nAv

, 2R

Polarization vector: P = lim X2 —
A0 AV
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Surface charge density: pps=P-a

\Volume charge density: pp=—V -P

Total charge: Q= ﬁs P.a,dS'+ MV Pdv'=0
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Note: Generally, D=¢&-E or |D, |=|&, &, &s||E



D, 8 2 0] |E,
Eg. For an anisotropic medium characterized by D, |=¢,2 5 O|-|E, |,
D 00 E

z z

find the value of the effective relative permittivity for (a) E =Z2E,, (b)

E=E,(8-29), () E=E,(2%+79).

D, 8 2 0|0 0 0
(Sol.) (@) |D, |=&|2 5 0|-|0[E,=&,|0|E,=9,|0|E,, &=9
D, 0 0 9|1 9 1
D, | 8 2 0][1 4 1
() |D, =52 5 0||-2|E,=¢)| -8 |E, =4g,| -2 |E,;, & =4
| D, | 0 0 9]0 0 0
D, | 8 2 0][2 18 2
(©) |D,|=62 5 O-|1|E;=¢| 9 |E, =9&|1|E,, & =9
| D, | 0 0 9]0 0 0
Hall Effect:

Current density: J = yJ, = NqV

If the material is a conductor or an n-type semiconductor the charge carrier are
electrons: q <0

Hall field: E, = -V x B =—(yv,)x(2B,) = —Rv,B,

Hall voltage: V, = —jod E.dx =v,B,d

E J=alJ,
X :i<0
J,B, Nq

If the material is a p-type semiconductor, the charge carries are holes: g > 0

Hall coefficient: C, =

Hall field: E, = Rv,B,

Hall voltage: V, =-v,B,d
Hall coefficient: C, >0



2-2 Boundary Conditions of Electromagnetic Fields

Boundary conditions for electric fields: Frecspace el
Eg. Show that E«=0 on the conductor plane. Né 3" a4
(Proof) "." The E-field inside a conductor is zero, R AR

AW)\ a

. {EdT=EAW=0=E, =0

PAS —SE =2

ffEds=E,as=
&g &o

Eg. Show that Eit= Ea: and anz-(Dl— Dzj: p, on the interface between two
dielectric.

(Proof) §E.d 1 =E,AW —E, AW =0, Ex=Ex

j‘:fSB ds = [Sl-a;ﬁ Sz‘azleS —a,-(D, - D, )AS = p,AS

A

8y (Dl— Dzj = ps Or Din-Dan=ps

|fps=0, then D1n=D2n or 81E1n=82E2n

Eg. Two dielectric media are separated by a charge free boundary. The electric
field intensity in media 1 at the point P1 has a magnitude E: and makes an angle
a1 with the normal. Determine the magnitude and direction of the electric field
intensity at point P2 in medium 2. [3T KB TFr]

. . tana, ¢
(Sol) E,sina, =E;sine,, &,E,cosa, =¢E, cosa, = 2=z

E,=E2+EZ = \/(Ez sine, )’ +(E, cosa, )’

2 1/2 2
= [(Elsin a, ) +(ﬁ E, COSalJ } = Ellsin ‘a, +(ﬁcos alJ ]
& &

tana, ¢




Eg. Assume that z=0 plane separates two lossless dielectric regions with &1=2 and

eo=3. If E, in region 1 is x2y—y3x+2(5+z), find E, and D, at z=0 in
region 2.

(Sol.) E, =x2y—y3x+25, E,(z=0)=E,(z=0)=x2y—-y3x,
D,,(z=0)=D,,(z=0) =2E,(z=0)=3E,,(z=0)
E;(zzo)zg(A§):§%§,; é}j:o):%zy—§3x+§%§

D,(z :O):(;<2y— §/3X+2%)380

Eg. A lucite sheet (&=3.2) is introduced perpendicularly in a uniform electric

field E, = >A<E0 in free space. Determine E;, D, and P inside the lucite. [f2
SN ERPIHELFT] R
. Eo = a,E, E’ E,
(Sol) D, =xD; =xD, = x&,E, Do=ascofr,  IEREE Do,
_)i = 1 _)i = L IS)i = ;\(E Free | Lucite | Free
& Eoéy .2 space | € =3.2 | space
—_—
- — — A 1 ~11
P|:Di_‘c"o i ZX(].—E)SOEO:XESOEO (C/m)

Eg. Dielectric lenses can be used to collimate electromagnetic fields. The left
surface of the lens is that of a circular cylinder, and right surface is a plane. If

N

E, at point P(ro,45°z) in region 1 is aAr5—aA¢3, what must be the dielectric

constant of the lens in order that E, in region 3 is parallel to the

X-axis?

(Sol.) Assume E, =a E, +a,E,,, " E,=E, =E, =>E,, =-3

For E; //x—axis= E, /[ x—-axis=> E,,=-E, = E, =3

Ed A

a, D =

n

g 5
D, =&k, =6E,, 65=5¢,3 =4, ~3

-

n



Eg. A positive point charge Q is at the center of a spherical dielectric shell of an
inner radius Ri and an outer radius Ro. The dielectric constant of the shell is &r.

— -

Determine E,V, 5 ,and P as functions of the radial distance R. [(5%]

(Sol) P=D-s,E=eg,(s ~1)E /,%/ i
R>Ro! e Lﬁ%

D = &, QZ and P=0 at ' L '
47R
Ri<R<R,
E:éR Q zzéR QZ’ [_jzéR Qz, ﬁ:éR :I.—i Q2
dree R 4R 47R g )AnR

' 1)1 1
V= Q zdR—IRLZdR Qo) it
© ArgR Rodrrg,e R 4re, & )R, &R
_— D=4, ——
" 47g R? " 47R?

1 1
V=V -0 Q jr- -1t [i-t|L, L
R=R, “Rdrg,R 4re, & )R, & )RR

Boundary conditions for magnetic fields:

Eg. Show that g1Hin=p2Hzn and 4@, x (ﬁl —ﬁz) =J.

(Proof) §{B-dS=0=> B, AS—B, AS =0, B1n=Ban
1n 2n

= u1H1n=p2H2n
fH-di=1= {H-di=H, -Aw+H, (-Aw) = I, Aw

abcda
= Hlt_HZt = szjénzx(ﬁl_ﬁz)zj

If J=0, then Hy=Hxt



Eg. Two magnetic media with permeabilities g1 and x> have a common boundary.
The magnetic field intensity in medium 1 at the point P1 has a magnitude H; and
makes an angle a1 with the normal. Determine the magnitude and the direction
of the magnetic field intensity at point P2 in medium 2.

(Sol) ﬂzH_z cosa, = ;J?chos(xl - tana, u,
H,sina, = H;sin o taneg, 4y

= a, =tan(*2tana)
H

%
H, = \/szt +HZ = \/(stin a,)’ +(H,cosa,)’ = Hl{sinzaﬁ(ﬂcos%)z}

Eg. Consider a plane boundary (y=0) between air (region 1, ur1=1) and iron

(region 2, ur2=5000). (a) Assuming B, =0.58—-109 (mT), find B, and the angle

that B, makes with the interface. (b) Assuming B, =10%+0.5y (mT), find B,

and the angle that B, makes with the normal to the interface.
(Sol.)

B :
2x = = =H1X=E:>BZX=2500
5000 4, Ho

(a) B,=05%-10y, B, =B, X+B,y, H

y

B, =B, =-10 = B, =2500%-10y, tane, = 2 tana — 5002 = 25
y 2 2 M 1

(b) B, =10%+05y,B, =B, +B, § Hy = 2% = H,, =2
Hy H,
1 10 . P

=B, =—B, = =0.002, B, =B, =05,.. B, =0.002%+0.5Y,

Lge 5000

B .
tana, = 1 :%:0.004

05

1y
Magnetic flux lines round a cylindrical bar magnet:




Eg. Assume that N turns of wire are wound around a toroidal core of a
ferromagnetic material with permeability 4. The core has a mean radius ro, a
circular cross section of radius a (a << ro), and a narrow air gap of length Iy, as
shown in Figure. A steady current lg flows in the wire. Determine (a) the
magnetic flux density Bf in the ferromagnetic core; (b) the magnetic field
intensity Hs in the core; and, (c) the magnetic field intensity Hg in the gap. [&X

B

(Sol.)
§H dl=NI0’ Ef :Eg:é¢Bf’ _f(2m0_|9)+_f|g:Nlo
C o]

Mo uNI - Lo NI,

vs]
U
T

Boundary Conditions between
Boundary Conditions between a Dielectric (Medium 1) and Two Lossless Media
a Perfect Conductor (Medium 2) (Time-Varying Case)

D €
On the Side of Medium 1~ On the Side of Medium 2 E,,=E; - D—“ = 6—‘
2t 2
E11=0 E2'=0 Hll=H21—)ﬁ=&
a,, x Hy = J; Hy, =0 By 12
a,, D, =p, D,,=0 Dy, =D,, > €,E,, = €E,,

B, =0 B,,=0 By, = By, = pH,y, = p,H,,




2-3 Steady-state Currents

AQ NgV-4,AsAt

NgV - AS
At At

Differential current: Al =

Current density: J =Ngqv=pV (A/m?), | :I_[j-d§ (A)

Let V=4E, J=N=—upkE =0k
- mobility o conductivity

o =—peU, + Py,

elefctrons \ holes
Eg. An emf V is applied across a parallel-plate capacitor of area S. The space
between the conducting plates is filled with two different lossy dielectrics of
thicknesses di and dz, permittivities & and &, and
conductivities o1 and o2, respectively. Determine (a) -
the current density between the plates, (b) the electric
field intensities in both dielectrics. [E&]

(Sol.)
V=(R +R,)l = d_, d. |,
o,S 0,5
J_l_ \Y ooV
S (dl/o-l)+(d2/o-2) o,d, +0,d,
V-Ed +Ed, J=0F -0,E, E-—22 g __

) 2 -
c,d, +0,d, o,d, +o0,d,

Eg. Assume a rectangular conducting sheet of
conductivity o, width a, and height b. A potential
difference is applied to the side edges. Find (a) the
potential distribution, (b) the current density everywhere

within the sheet. [ERIABTFFT]
(Sol.)

(3) V(¥)=Cx, V(2)=Ca=Vo=> V(x)= \% X

Vo J_G6E=_go
a a

() E =-VV(X) =%



Equation of continuity: | =§J-d§=—d—Q=—im,odv=m'V-Jdv:>V-J+%=O

V'

= — = op p  Op -
If J=0oF, oV-E+—=05+2L=0, p= ¢
a ‘e a P™Po

Boundary conditions for current densities:

V-3I=0=> ([J,=1J,

Governing Equations for Steady Current Density

V x i 0= ﬁ:ﬁ Differential Form Integral Form
o Jy o, v.7-0 fJ-ds=0
v{i}o {13.di-0

O O

Eg. Two conducting media with conductivities @1 and 02 are separated by an
interface. The steady current density in medium 1 at point P; has a magnitude J;

and makes an angle %1 with the normal. Determine the magnitude and direction
of the current density at point P2 in Medium 2. [& X E#T]

(Sol.)

. . tana, o

J,cosa, =J,co8,, 0,J,siNa, =0,d,sina, = 2=—2

tana, o)

2 Y 2
. 2 2 .

J, =32+ =\/(stm a,) +(J,cosa,) :[(ﬁJlsmalJ +(J1cosa1)2]

o1
Ji,=1J E,, =o,E
{ Y 2n:_>0'1 o _ 3,05:[512_52}5% :[51_82ﬂJE1n- If
Din =Dan = ps = 61B1, —&:B50 = o5 0y 02

o, >0, = p, =&, =D,,.

2-4 Maxwell’s Equations and Plane EM Waves

Maxwell’s Equations

Differential Form Integral Form Significance
[
VxE= —Z—? #ﬂc E-dt= —‘jl—t Faraday’s law
oD 2
VxH=J+ é;—? ) H-dé=1+ & ;—t - ds Ampeére’s circuital law
V:-D=p ﬁD-ds:Q Gauss’s law
V:-B=0 ) B:-ds=0 No isolated magnetic charge

Note: %_Et) is equivalent to a current density, called the displacement current density.



Eg. A voltage source Vosin(mt), is connected across a parallel-plate capacitor C.
Find the displacement current in the capacitor.

: d
(Sol) i, = C% =CV,wcos ot = gEAVOa)cos wt

- _ V, .
D:gE:D:eFOSIna)t

I— dS =g = Va)COSa)t—I

Lorentz condition: V- A+ yg%w
s e, 0 Ao g e 2 ooV N v B V2 A = 1 - V(e OV e OA
V><B_,uJ+yat_V><V><A—,uJ+,meat(VV aJ[)_V(V A)-VA=,4] V(,ugat) watz

%A - - oV
=ViA- =—w)+V(V-A+ us —
"= 1 +V( ﬂ«sat)

-
If Lorentz Condition holds, we have V2A— ue th‘ =—uJ

' V-5=p=V-8E=p=V-8(—VV—%)2VZV +Q(v-/&)=vzv +§(—w&)=—£
ot ot ot &

oV P
VAV - =—=
Koo P

Effective permittivity:

VxH :j+g§:oﬁ+ joeE = jw(e+_£)l§: jos E
ot Jo

.o - o . .
=S¢ =¢c—]J—=¢&-je"'"=o=aw .Similarly, u=py-ju
w

Loss tangent: tand, = g— -2
& aEe

Eg. A sinusoidal electric intensity of amplitude 250V/m and frequency 1GHz

exists in a lossy dielectric medium that has a relative permittivity of 2.5 and loss

tangent of 0.001. Find the average power dissipated in the medium per cubic

meter.

(Sol.)

tans, =0.001 = —2

ak &,

107°

o =0.001(2710° )55 )(25) = 1.39 x10*(S /m)

p =EJE =%OEZ =E><(1.39><10"4)><2502 = 4.34(W /m?)



Maxwell’s Equations in the source-free regions:
VXE:—y%, VxH :gﬁ, V-E=0, V-H=0
ot ot

Phasor representations: Eg. xAe 1#*9 (>‘<§+ 9g)e‘“ﬁ“‘9’, etc.
Instantaneous representations: Eg. XAcos(at — Sz + 6) = Re[RAe 1/ .el“] etc.

_ - . . _ H .
In case E and H are proportional to ¢, we have VxE:—y%:—J@uH ,

VxH =25 = e, and k2 2=k 2tk 2+ k=0 e,

ot

Eg. Giventhat H = y2cos(152x)sin(6710°t — £z) in air, find E and p.

(Sol.) Phasor: H = y2cos(152x)e | (157)% + B° = 0’ uye, =4007° = f=13.27
1
Joe,
E(x,z,t) = Re[E(x,2)e'"]

E:

V x H =[R1587 cos(157x) + 2j1807 sin(152x)]e

Eg. Giventhat E = $0.1cos(102x)sin(6210°t — Bz) in air, find H and .

(Sol.) Phasor: E = §0.1cos(102x)e ™, (107)? + B% = w?uye, = 40072 = 8 =10V/37

=~ VxE =1 _[20.18c0s(10) + 20.1(107) cos(10zx) e *
jou o

H(x,z,t) = Re[H (%, z)e "]

H=—

Plane EM waves excited by a current sheet:

Given J(t)=-%J(t) at z=0, the field components of the EM plane wave excited by

the current density are E(z,t) = )?%J(trri) and H(z,t) = J_ry%\](tfri) ,
v v

p p
respectively. If it is a sinusoidal EM plane wave, J(t) = —%J, cos(at) at z=0.

Jo

We have E(z,t):f(%ocos(a)sz), I:I(z,t):iy?cos(a)t;kz).



Electromagnetic wave spectrum:

1pm  _ _ 3x102Hz
Cosmic Rays
10pm | | 3x10"HZ
Gamma Rays
Wopm A N AR HE
3x10"HZ
1nm _ %Rays | 3x
0nm _| L 3x10"%HzZ
100nm | Ultraviolet Rays | 3x105Hz
1um Yisible Light Rays 3x10 % HzZ

Infrared rays

10 um 3x10%HZ

100um _| | 3x10%HZ
Infrared rays

1mm _| | 3x10"HZ

10mm - Microwaves |- 3x10"HZ

100 mm _| | 3x10°HZ
UHF Radio Waves

1m e I "5 [ o g
VHF Radio Waves

10m L 3x10'HZ
HF Radio Waves 5

100m | — | 3x10°HZ
MF Radio Waves 5

1km e I 10 HZ

ot LF Radio Waves 3% 10*HZ




2-5 Plane EM waves in a simple, nonconducting and source-free region
In a simple, nonconducting and source-free region:
VXE——,U%, VxH :gﬁ, V-E=0, V-H=0

ot ot
OE
o2

2
VxVxE:-yg(vXH‘)z—ma@t—E_wv E)-V?E=-V’E = V’E — ue

Velocity of the plane EM wave: v:L

Jue

In vacuum, uo=4nx1077, .so:i x10%=c= ~3x10%(m/s).
367 Ho&y
27z _2r
Wave number: k=w/v= -/ ue i1
Assume E oce! =V?E+k*E=0 (drop &' factor)

d? E(z)

Suppose E =E(z) = +k’E=0=E(z)=E;e ™ +E;e™
Traveling wave in +z-direction:
E; (z,t) = Re[Eje ™™ -e'] = E{ cos(at — k2)

: z
Let wt-kz=constant= Phase velocity: vp= % =@

k

If E=XE;(2),VxE=—jou(RH; + yH; +2H)

—H =H =0, H; (z)_—J—( jK)E; (z)_;E (z), where = “’“ \f

and 7o=120m~377Q in free space.

TEM waves (Transverse electromagnetic waves): E and H _L direction of
propagation (&,)

x>

E(R)=E(x,y,z) = Ee ™ _E e MR _E e R = \yhere R=fx+yy+7z,

k=4k, and k?+k+k?=a’ue

-.-v.E=0=v-(E0e-ikén'f*)=e-1kén'ﬁv.E +E, - (Ve "Ry = E . (Ve I R)
= E, - —j(Rk, + 9k, + 2k, )e " = — jK(E, - 4,)e M4 *

-E,=0=E, L4, (TE).Similarly, V-H=0=H, 14, (TM)



Relation between E-field and H-field of the plane EM wave:

E(R) =~ Vx FA(R) =~ (- jK)A x F(R) = E(R) = —na, x A (R), where =" = |£
jawe joe Kk

(R)=-— VxER) =14 xER) = A(R)=1a xE(R)=H L4,
Jou n n

I

Eg. The instantaneous expression for the magnetic field intensity of a uniform
plane wave propagating in the +y direction in air is given by

H=24x10"° cos(107;zt—koy+%) A/m. (a) Determine ko and the location where

H, vanishes at t=3ms. (b) Write the instantaneous expression for E.

o 107 1

Sol) w=10"7r=k, =—=—"""=2"_ 4 =Y

(el T T Tava0 0 T

@ cos[(2n+1)%]=0:>1077r><3><10‘3—%y_;-%:2n2+17r:>y:30(3xlo4_%_n)
(b) E(z,t) =-m,8,xH(z1), E(Z,t)=—)”(4807110‘6cos(1077zt—%y+%)

Eg. A 100MHz uniform plane wave E =3XE, propagates in the +z direction.

Suppose &=4, ur=1, 6=0, and it has a maximum value of 10%V/m at t =0 and
z=0.125m. (a) Write the instantaneous expressions for E and H . (b) Determine
the location where E is a positive maximum when t=10"®sec.

(Sol) k= pu éqc, =4§, &, =12, UZW/M =607
EoE,

(@) E(z,t)=RE, =10~ cos(27 x10°t —kz+6) has the maximum in case of

27 x10%t —kz+6=0 = 0 =% — E(z2,t) = 10 cos(zﬂloet_%”ug) |

_ 107 A T
H(z,t)==4 xE(z,t)=7Y cos(2710%t - —z+ =
(z,1) xE(z,1) y60 (2r 3 6)

T

(b) cos2nr) =1, 2ﬂ108(108)—4?”zm a2, zgi—



Polarization of the EM wave: The direction of electric field of the EM wave.
In the following text, we assume all EM waves to be z-propagated if we do not

specify them.
22 Linear polarizations in the x and the y-direction,
’ ‘ respectively: E =XE,e ' E=yE e ¢

’ Electric field
"In'q’w Linear polarization general case:
E =%E,e ' + §E e 1% where Ex and Ey are in

in
phase (we can assume the both to be real).

circular polarization:

Right-hand
E‘ — kEoe—j(kue) _ 9] Eoe—j(kz+9)

polarization:  Fee 2|

Left-hand circular
E‘ — kEoe—j(kHB) + yj Eoe—j(kz+9)
Ty
e Right-hand elliptical polarization:
direction of
propagation — A _i(kz+0 e (k240
E =B e —§jE,e 1 (B # Eyp)
elliptical polarization:

Left-hand
E= )A(Eloe_j(ng) +9i Ezoe_j(kz+€) (Ewo # Ey)

If this wave were approaching
an observer, its electric

vector would appear to be
We can receive/transmit linearly-polarized EM

rotating counterclockwise.
This is called right -
elliptic polarization.

waves by a linear dipole antenna.

Circular reflector antenna.



http://faculty.pccu.edu.tw/~meng/LinearPolarization.mp4
http://faculty.pccu.edu.tw/~meng/CircularPolarization.mp4
http://faculty.pccu.edu.tw/~meng/EllipticPolarization.mp4

Instantaneous Expression for E of right-hand elliptical-polarization (drop
phase factor e7#%):
E(2,t) = Re{[RE,.e ' — JE, e 1¢Je  }= RE,, cos(at — k) + JE,, sin( at — k2)
=XE, (z,t) + JE, (z,1)

STV sin(wt):Ez(o't):[ElE(O’t)]2+[EZéO't)]Z:1, ot = tan”!

10 20 10 20 1( ' )

= cos(at) =

1. XE, =%(>A<EX —S\/jEy)-i-%()’zEx +YJE,): A linearly polarized plane wave can be

resolved into a right —hand and left—hand elliptically- or circularly-polarized waves.
E,+E, ..E -E . E,—E E+E
0 1 Jij 1 0)+(X 0 1 + )
2 2
A circularly—polarized plane wave can be resolved into two opposite
elliptically—polarized waves.
E.+E, E+E2)+( -E, A.El—EZ):
2
An elliptically—polarized plane wave can be resolved into two opposite
circularly—polarized waves.

2. RE, - JiE, = (&

3. %E, - JiE, = (&

Eg. The E field of a uniform plane wave propagating in a dielectric medium is

iven by E(t,z) = £2c0s(10°t — —=) — ¥sin(10°t — =) V/m. (a) Determine the
g

NE V3

frequency and wavelength of the wave. (b) What is the dielectric constant of the
medium? (c) Describe the polarization of the wave. (d) Find the corresponding
H field.

(Sol.) Phasor: E = %2e 1/\? 1 gje 12/@

(@) ®=10°= f =1.50x10" Hz, k:i:m:%:z\/én

V3

(b) v:%: 3x10° =1/ Jp,e, = &, =3

(c) It is the left—hand elliptically-polarized wave propagating along +z direction.

@ o= | o o7 5 =2
gogr \/§
A-La 4, xE= L x (%2873 1 gje V%) = e N2 (g2e 1V gjeni YRy
n 77 120«
V3

Z )+ y2cos(10°t — z

N ﬁ)]

H(z,t) = Re[H (2)e!*]= ———[&sin(10%t —
= H(z,1) [()]12071'[(



Eg. Write down the instantaneous expression for the electric- and magnetic-field
intensities of sinusoidal time-varying uniform plane wave propagating in free
space and having the following characteristics: (1) f=10GHz; (2) direction of
propagation is the +z direction; (3) left-hand circular polarization; (4) the initial
condition is the electric field in the z=0 plane and t=0 having an x-component
equal to Eoand a y-component equal to V3Eo. [&ABH]

(Sol) @=27x10°, v=2 =c=3x10° = k = 2% x10°
3

Phasor: E = fAe 1™ 1 9jAe 1®*9) for the left-hand circular polarization
= E(z,t) = Ref[RAe 09" 4 gjAe 1) Je It }= A cos(at — kz + 0) — JAsin( et —kz+ 0)

z=0 and t=0, E(0,0) = RAcos(6) — JAsin(6) = KE, + J-/3E, = H=tan™ (- V3), A=2E,
E(z,t) = R2E, cos[27710"t - 2?”102 7+ tan ™ (—/3)] - §2E, sin(2710*°t — 2?”102 Z+tan(—/3)]

|:| — ién x E — iix[)A(Ae‘j(k”g) _ §/jAe_j(kZ+6)] — 2EO [ye—j(kz+6) + )fzje—j(kz+6)]
o Mo 120
— H(z,t) = Re[H ()]

Application of polarization: Liquid Crystal Display (LCD)
The polarizations of incident lights are synchronized by the rotations of molecules of

liquid crystal, which were controlled by an AC voltage. And then the output polarizer
can block the orthogonally-polarized lights to control the output optical intensities.

Light Source Light Source

Light output



Poynting vector: P=ExH

-~ 0B o - s = S = - - B - D - -
VxE=-2, _7+:®P V. (ExH)=H - (VxE)-E-(vxH)=-A- £ -E.Z _E.J
x VxH =T+ (ExH) (VxE) ( ) ot 5

= O(uH) =z o(E) = = 0,1 42, 0,1 o2 =2
.o )—E-M—E-J:—E(Ey\H\ )—5(55\5\ )-olE]
. . = . 0 Elz2 M52 _2
C g(ExH)-dS:fﬂv-(ExH)dv:—af‘vﬂ(E‘E‘ +E‘H‘ )dv—wa\E\ dv
— P=ExH is the electromagnetic power flow per unit area.
Instantaneous power density: P(z,t) = Re[E(z)e'*]x Re[H (z)e’*]

Set E(z) = XE,(2) = RE,e "7 = H(z) = l[an x E(z2)] = 956_m e 1O
n

77
E(z,t) =Re[E(z)e'*]=RE,e ™™ cos(wt — fz)

and H(z,t) =Re[H(2)e'"] = 9;5—1e"“ cos(awt - fz-6,)
n
= P(z,t) = E(z,t) x H(z,t) = Re[E(2)e " ] x Re[H (2)e ']

|2

0

"y
2|

e [cos 6, +cos(2mt — 282 - 6,)] oo|E,|?

Average power density: P, = % Re(ExH")

2
P, :%LT P(z,t)dt = 2 2|°|| e cosd, , where T is the period. And it can be proved that
n
— 1 oy - *
Pav :ERe(EX H )

Eg. Show that P(z,t) of a circularly—polarized plane wave propagating in a

lossless medium is a constant.
(Sol.) Assuming right—hand circularly—polarized plane wave, &, =2

E(z,t) = E,[Rcos(at — Sz) + §sin( ot — f2)]

E

H(z,t) = 1(zin x E) = —2[-&sin( ot — Bz) + Y cos(at — f2)]
n n

B(2.t) = E2t)x H(z,) = 250
n



Eg. Find P on the surface of a long, straight conducting wire of radius b and

conductivity o that carries a direct current 1. Verify Poynting’s theorem.
J 2
7 o o 27h 207b

L o 12 2, L 2
_ﬁpdsz—ﬁpardszmzmgzl (O'7ZbZ):I R

Radiation Patterns of Antennas :

Half-power beam width: Angular width of main beam
between the half-power (-3dB) points

Sidelobe level: (|Emax| in one sidelobe)/( |[Emax| in main beam)
Null positions: Directions which have no radiations in the
far-field zone.

8.2 (dB)
! 107 (dB)
(a) A typical radiation pattern /\ il 13.5 (dB)
in polar coordinates AN i /N
0 x/8 w/4 3w/Bf w2 f5x/8 3x/4 Tx/8 ¥
o o

(<) Radiation pattern in rectangular
coordinates plotted in dB scale.

Note: The half-power beam width of the antenna for
broadcasting or wireless communication is wide but :
its directivity is low. Contrarily, the half-power beam ;/

width of the Radar antenna for detecting targets is \ //
narrow but its directivity is high.

or wireless ¢ Radar antenna for detecting targets

Radiation patterns of linear dipoles:

W \—/\_/l
@ 2a/A=1/2. (b) 2h/A=1.
Z Z
(c) 2h/\=3/2. (d) 2h/N=2.

E-plane radiation patterns for center-fed dipole antennas



Some examples of coplanar antennas (by H. —C. Chen and Dr. I-Fong Chen):

1.5 mm

—

|

(side view)

X-Y Plane

X-Z Plane

Y-Z Plane
Test Result
Freq. X-Y Plane X-Z Plane Y-Z Plane
(MHz) |Vertical |Horizontal| Vertical |Horizontal| Vertical |Horizontal
2400 1.87 1.71 -10.04 -0.42 -12.74 2.26
2450 1.66 1.14 -10.00 -0.80 -13.37 1.55
2500 1.47 0.88 -10.42 -0.09 -13.68 1.93

Unit : dBi




2.4G~2.5GHz 1y & 45 HE

2400MHz X-Y Plane

Max=1.14 dBi
Avg= -766dBi

2500MHz X-Y Plane

U00MHs X-Z Fane

Max =-10.04 dBi

1.5 mm

e




Test Result

X-Y Plane X-Z Plane Y-Z Plane

Freq.

(MHz) [Vertical [Horizontal| Vertical |Horizontal| \ertical |Horizontal
2400 1.57 1.30 -13.78 -0.76 -13.11 1.81
2450 1.24 0.84 -12.96 -0.87 -10.89 1.41
2500 1.10 1.31 -11.09 -0.43 -11.79 0.86

2.4G~2.5GHz 1y & H4E EE

Unit : dBi

2400MHz XY Plane

2450MHz X-¥ Flane

Max =1.57 dBi

2500MHz X-¥ Plane

Max =084 dBi

Max =110 dBj

2400MHz X-Z Plane.

Max =-13.78 dBi

2450MHz X-Z Plane

Max=-0874dBi

Max =-11.09dBi

2400MHz Y-ZPlane

2450MHz ¥-Z Plane

Max=1414dBi

Max =-11.7 dBi

2500MHz Y-Z Plane




Phased Array: "." cos¢, = _—é, ..MVary ¢ electrically = Vary ¢o (the direction of the

main beam). It can be utilized as a military radar system to scan and track a target.

2-6 Plane EM Wave in a Lossy Media

VxH =J+ jaxE = of + jaE = jo(e — j2)E = jar E ,gc:.s—jz:g'—jg".
1) o

Complex wave number: k, = @,/ e, . Loss tangent: tan s, = g"/g' =Z
e

Propagation constant: y = jk, = joJus, =a+ jf = ja)\/E(1+ J_L)%
we

Eoce” =¥ =g .g
If the medium is lossless—a=0 and kc.=4; else if the medium is lossy— a>0.

Phase constant: g = 2”

o= a)\/i[/n( _12, p-= wf[/1+( )2 +1]72

Case 1 Low-loss Dielectric: —<<l1l=a~= . B o ue [(1+ (—) ]
e

Intrinsic impedance: 7, = \/z(1+ J'L)

Phase velocity: v,

[1——(—) ]
,3 \/ \/
Case 2 Good Conductor: —— >>1=>q = P = Wf% = Jrfuo |
we

and 77c=\/7 (1+J)1/ =1+ J)— Phase velocity: v —% E

Skin Depth (depth of penetration): & = 1.1

a JAfuo .

For a good conductor, & = l - A
o 27

hll—‘


http://faculty.pccu.edu.tw/~meng/Phased-array%20antenna.mp4

Eg. E(t,z) = X100 cos(10” #t) V/m at z=0 in seawater: £=72, u=1, 6=4S/m. (a)
Determine a, B, vp, and 5. (b) Find the distance at which the amplitude of E is
1% of its value at z=0. (c) Write E(z,t) and H(z,t) at z=0.8m, suppose it propagates
in the +z direction.

(Sol.) @ =10"7, f=5x10%Hz, alweoe=200>>1, .". Seawater is a good conductor in
this case.

(@) a=+uc=889INp/m=p4, n, =@+ j)\/@
O

v, = =3.53x10°m/s, /1:%:0.707m, 5:1:0.112m
a

SRS

(b) e =0.01=> 7 =~ In(100) = 0.518m
(04

(c) E(z,t)=Re[E(z)e'*]=%100e * cos(awt — fz)
z =0.8m = E(0.8,t) = X100e ** cos(at —0.83) = £0.082 cos(10’ 2t —7.11)

H(0.8,t)=14 xE(08,1), H(08,1)= gRe[Ex(%8) giety _ 90,026 cos(10” 7 —1.61)
n

Eg. The magnetic field intensity of a linearly polarized uniform plane wave
propagating in the +y direction in seawater &=80, ur=1, 6=4S/m is

H= kO.lsin(lOloyzt—%) A/m. (a) Determine the attenuation constant, the phase

constant, the intrinsic impedance, the phase velocity, the wavelength, and the
skin depth. (b) Find the location at which the amplitude of H is 0.01 A/m. (c)
Write the expressions for E(y,t) and H(y,t) at y=0.5m as function of t.
(Sol.) (a) o/we=0.18<<1, .". Seawater is a low-loss dielectric in this case.

—~ax E\/Z =8396Np/m 7, ~ \/2(14_ j—2) = 41.8e10028%
2\ ¢ &£ 20

B~ o+ (2] =300 , v, =2 =333x10"m/s, s=1_119x107?m,
8 we p a

A _ 27 _ 6.67 x10°m
B

(b) e™ =%:> y =£In10 =2.74x107°m
0.1 a

T

(c) H(y,t) =%0.1e ¥ sin(10"°t — py — g) , y=05,8=3007
w

= H(0.5,t) = 85.75x10 ?° sin(10*° 2t — 5)

4, =9 = E(0.5,t) =14, x A(0.5,1) = 22.41x10 **sin(10° 2t — % +0.02837)



Eg. Given that the skin depth for graphite at 100 MHz is 0.16mm, determine (a)
the conductivity of graphite, and (b) the distance that a 1GHz wave travels in
graphite such that its field intensity is reduced by 30dB.

(Sol.) (@) o = ! =0.16x10"° = 0 =0.99x10°S /m
N Afuo
(b) At f=10°Hz, o = /afuc =1.98x10*Np/m
2 1.5 4
—-30(dB) =20log,,e ™ =z = =1.75x10"m
alog,,e

Eg. Determine and compare the intrinsic impedance, attenuation constant, and
skin depth of copper 6.,=5.8x10’S/m, silver 64,=6.15x10’S/m, and brass
our=1.59x107S/m at following frequencies: 60Hz and 1GHz.

(Sol) a=ruc, s=2, f1=sL, n =@+ )<
(94 o
Copper: 60Hz= 7, =2.02(1+ j)x10°Q, a=1.17x10°Np/m, &=8.53x10"m

1GHz= 1, =8.25(1+ j)x107°Q, a=4.79x10°Np/m, & =2.09x10°m

Group velocity: v _Go 1
C 0 dg dBldw

[ i
E(t,z) = E, cos[(@w + Aw)t — (B + AB)z] + E, cos[(w — Aw)t — (B — AB)Z]

= 2E, cos(tAw — zA ) cos(awt — fz)

dz Aw 1 dw 1
Let tA ZA [ =constant Vy=—=— = =
o= — e Tt A ABlA® dp  df/de

dv, dv,
Vg:Vp+ﬂW Vg:vp—ld_
o _do
Proof) v, =— =v B, Vv o T B—
(Proof) =5 @=V,B, V, "5 ﬂﬂ
dv
o B= 2z , PA=2r, AB+ pdA= Ozﬁ:—i, vV, =V, —A—"

g da



http://faculty.pccu.edu.tw/~meng/Phase%20Velocity.wmv

Plasma: lonized gasses with equal electron and ion densities.
lonosphere: 50~500 Km in altitude
Simple model of plasma: An electron of charge —e, mass m, position X

2— 2
—eE = md—_—ma)2>‘<:>>‘<: ° E ic di p=—6xX= GZE
dt? ma Mo
, . I Ne® -
. Total electric dipole moment: P=Np=-——E
Mo
_ . 2 o’ 2
D=¢,E+P= go(l—NLz)E =g,(1-—)E, where o, = Ne is the plasma
mo‘e, ) me,
2
angular frequency, and the effective permittivity is ¢ =g, (1— ) & (1—?)
2
Propagation constant: y = je./ue, - |1- (_
Intrinsic impedance of the plasma: 7, = Mo where n,=1207(Q)

f 2
1/1—(7")

Case 1 f<fp: pisreal, n, ispure imaginary= Attenuation—= EM wave is in cutoff.
Case 2 f>fp: y is pure imaginary, 7, is real=EM wave can propagate through the
plasma.



