## Chapter 4 Selected Topics for Circuits and Systems

## 4－1 Poisson＇s and Laplace＇s Equations

Poisson＇s equation：$\nabla \cdot \varepsilon \vec{E}=\rho \Rightarrow \nabla^{2} V=-\frac{\rho}{\varepsilon}$
Laplace＇s equation：If no charge exists，$\rho=0, \nabla^{2} V=0$

Eg．The two plates of a parallel－plate capacitor are separated by a distance $d$ and maintained at potentials 0 and $V_{0}$ ．Assume negligible fringing effect at the edges， determine（a）the potential at any point between the plates，（b）the surface charge densities on the plates．［清大電研］
（Sol．）$\frac{d^{2} V}{d y^{2}}=0 \Rightarrow V=c_{1} y+c_{2}, V(y=0)=0, V(y=d)=V_{0} \Rightarrow V=\frac{V_{0}}{d} y$ $\stackrel{\rightharpoonup}{E}=-\hat{y} \frac{d V}{d y}=-\hat{y} \frac{V_{0}}{d}, E_{n}=\hat{a}_{n} \cdot \stackrel{\rightharpoonup}{E}=\frac{\rho}{\varepsilon}$


At the lower plate：$\hat{a}_{n}=\hat{y}, \rho_{s l}=-\frac{\varepsilon V_{0}}{d}$ ．
At the upper plate：$\hat{a}_{n}=-\hat{y}, \rho_{u l}=\frac{\varepsilon V_{0}}{d}$

Eg．Show that uniqueness of electrostatic solutions．
（Proof）Let $V_{1}$ and $V_{2}$ satisfy $\nabla^{2} V_{1}=-\frac{\rho}{\varepsilon}$ and $\nabla^{2} V_{2}=-\frac{\rho}{\varepsilon}$ ．Define $V_{\mathrm{d}}=V_{1}-V_{2}$ ， $\nabla^{2} V_{\mathrm{d}}=0$
1．On the conducting boundaries，$V_{\mathrm{d}}=0 \Rightarrow V_{1}=V_{2}$
2．Let $f=V_{\mathrm{d}}, \vec{A}=\nabla V_{\mathrm{d}}$ $\nabla \cdot\left(V_{d} \nabla V_{d}\right)=\nabla \cdot(f \vec{A})=f \nabla \cdot \vec{A}+A \cdot \nabla f=V_{d} \nabla^{2} V_{d}+\left|\nabla V_{d}\right|^{2} \Rightarrow \oiint{ }_{s}\left(V_{d} \nabla V_{d}\right) \cdot \hat{a}_{n} d s=\iint_{v^{\prime}}\left|\nabla V_{d}\right|^{2} d v$ $R \rightarrow \infty, V_{d}=V_{1}-V_{2} \propto \frac{1}{R}, \nabla V_{d} \propto \frac{1}{R^{2}}, d s \propto R^{2} \Rightarrow \oiint_{s}\left(V_{d} \nabla V_{d}\right) \cdot \hat{a}_{n} d s \rightarrow 0, \therefore \iiint_{v}\left|\nabla V_{d}\right|^{2} d v=0 \Rightarrow$ $V_{\mathrm{d}}=0 \Rightarrow V_{1}=V_{2}$

Image Theorem $\boldsymbol{P}(x, y, z)$ in the $y>0$ region is $V(x, y, z)=\frac{Q}{4 \pi \varepsilon_{0}}\left(\frac{1}{R_{+}}-\frac{1}{R_{-}}\right)$，where $\boldsymbol{R}_{+}$ and $R$－are the distances from $Q$ and $-Q$ to the point $P$ ，respectively．


Eg. A line charge density $\rho_{l}$ located at a distance $d$ from the axis of a parallel conducting circular cylinder of radius $a$. Both are infinitely long. Find the image position of line charge.
(Sol.) Assume $\rho_{i}=-\rho_{l}, V=-\int_{r_{0}}^{r} E d r=-\frac{\rho_{l}}{2 \pi \varepsilon_{0}} \int_{r_{0}}^{r} \frac{1}{r} d r=\frac{\rho_{l}}{2 \pi \varepsilon_{0}} \ln \frac{r_{o}}{r}$

$$
\Rightarrow V_{M}=\frac{\rho_{l}}{2 \pi \varepsilon_{0}} \ln \frac{r_{0}}{r}-\frac{\rho_{l}}{2 \pi \varepsilon_{0}} \ln \frac{r_{0}}{r_{i}}=\frac{\rho_{l}}{2 \pi \varepsilon_{0}} \ln \frac{r_{i}}{r}
$$

$$
\frac{r_{i}}{r}=\frac{d_{i}}{a}=\frac{a}{d}=C \Rightarrow d_{i}=\frac{a^{2}}{d}
$$



Eg. A point charge $Q$ is placed at a distance $d$ to a conducting sphere. Find its image.

(a) Point charge and grounded conducting sphere.

(b) Point charge and its image.
(Sol.) $V_{M}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q}{r}+\frac{Q_{i}}{r_{i}}\right)=0 \Rightarrow \frac{r_{i}}{r}=-\frac{Q_{i}}{Q}=\frac{a}{d} \Rightarrow Q_{i}=-\frac{a}{d} Q, \frac{a-d_{i}}{d-a}=\frac{a}{d} \Rightarrow d_{i}=\frac{a^{2}}{d}$

## 4-2 Boundary-Value Problems in Rectangular Coordinates

$$
\begin{aligned}
& \nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0 . \text { Let } V(x, y, z)=X(x) Y(y) Z(z), k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=0 \\
& \rightarrow \frac{d^{2} X(x)}{d x^{2}}+k_{x}^{2} X(x)=0, \frac{d^{2} Y(y)}{d y^{2}}+k_{y}^{2} Y(y)=0, \frac{d^{2} Z(z)}{d z^{2}}+k_{z}^{2} Z(z)=0
\end{aligned}
$$

For $X(x), 1 . k_{\mathrm{x}}{ }^{2}=0, X(x)=A_{0} x+B_{0}$ is linear.
2. $k_{\mathrm{x}}^{2}>0, X(x)=A_{1} \sin k_{\mathrm{x}} x+B_{1} \cos k_{\mathrm{x}} x, X(x=a)$ is finite, $X(x=b)$ is finite
3. $k_{\mathrm{x}}{ }^{2}<0, X(x)=A_{2} \sinh k_{\mathrm{x}} x+B_{2} \cosh k_{x} x, X(\infty)$ is finite, $X(-\infty)$ is finite

Similar cases exist in $Y(y)$ and $Z(z)$.

Eg. Two grounded, semi-infinite, parallel-plane electrodes are separated by a distance $b$. A third electrode perpendicular to and insulated from both is maintained at a constant potential $V_{0}$. Determine the potential distribution in the region enclosed by the electrodes. [高考]

$$
\begin{align*}
& V(x, y, z)=V(x, y)=X(x) Y(y)  \tag{Sol.}\\
& V(0, y)=V_{0}, V(x, 0)=0
\end{align*}
$$


B.C.:

$$
(\infty, y)=0, v(x, b)=0
$$

$$
\frac{d^{2} X(x)}{d^{2} x}=k_{x}^{2} X(x) \Rightarrow X(x)=D_{1} e^{k_{x} x}+D_{2} e^{-k_{x} x}=D_{2} e^{-k_{x} x}
$$

$$
\frac{d^{2} Y(y)}{d y^{2}}=-k_{y}^{2} Y(y) \Rightarrow Y(y)=A_{1} \sin k_{y} y
$$

$$
\Rightarrow V_{n}(x, y)=C_{n} e^{-k_{x} x} \sin k_{y} y \Rightarrow k_{x}=k_{y}=\frac{n \pi}{b}, n=1,2,3
$$

$$
\Rightarrow V_{n}(x, y)=C_{n} e^{-\frac{n \pi}{b}} \sin \frac{n \pi y}{b}
$$

$$
V(0, y)=V_{0}=\sum_{n=1}^{\infty} C_{n} \sin \frac{n \pi y}{b}
$$

$$
\int_{0}^{b} V_{0} \sin \frac{m \pi y}{b} d y=\sum_{n=1}^{\infty} C_{n} \int_{0}^{b} \sin \frac{n \pi y}{b} \sin \frac{m \pi y}{b} d y
$$

$$
=\left\{\begin{array}{l}
\frac{2 b V_{0}}{m \pi}, m: \text { odd } \\
0, m: \text { even }
\end{array}=\left\{\begin{array}{l}
\frac{C_{n}}{2}, m=n \\
0, m \neq n
\end{array}\right.\right.
$$

$$
\Rightarrow C_{n}=\left\{\begin{array}{l}
\frac{4 V_{0}}{n \pi}, n: \text { odd } \\
0, n: \text { even }
\end{array}\right.
$$

$$
V(x, y)=\frac{4 V_{0}}{\pi} \sum_{n: \text { :odd }} \frac{1}{n} e^{-\frac{n \pi x}{b}} \sin \frac{n \pi y}{b}, n=1,3,5, \cdots \text { for } x>0,0<y<b .
$$

## 4－3 Boundary－Value Problems in Cylindrical Coordinates

$\nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$
1．Assume $\frac{\partial^{2} V}{\partial z^{2}}=0$ ，then $V(r, \varphi)=R(r) \Phi(\varphi)$ ，
$\rightarrow r^{2} \frac{d^{2} R(r)}{d r^{2}}+r \frac{d R(r)}{d r}-n^{2} R(r)=0, \frac{d^{2} \Phi(\phi)}{d \phi^{2}}+n^{2} \Phi(\phi)=0$
$\rightarrow R(r)=A_{r} r^{\mathrm{n}}+B_{\mathrm{r}} r^{-\mathrm{n}}, \Phi(\varphi)=A_{\varphi} \sin n \varphi+B_{\varphi} \cos n \varphi$
$\rightarrow V_{\mathrm{n}}(r, \varphi)=r^{\mathrm{n}}(A \sin n \varphi+B \cos n \varphi)+r^{-\mathrm{n}}\left(A^{\prime} \sin n \varphi+B^{\prime} \cos n \varphi\right), n \neq 0$
$\rightarrow V(r, \varphi)=\sum_{n=1}^{\infty} V_{n}(r, \phi)$

2．Assume $n=0, \frac{d^{2} \Phi(\phi)}{d \phi^{2}}=0 \Rightarrow \Phi(\varphi)=A_{0} \varphi+B_{0}, R(r)=C_{0} \ln r+D_{0}$ ，
In the $\varphi$－independent case，$V(r)=C_{1} \ln r+D_{1}$
In the $\varphi$－dependent case，$\Phi(\varphi)=A \varphi+B, V(r, \varphi)=(C \ln r+D)(A \varphi+B)$

Eg．Consider a very long coaxial cable．The inner conductor has a radius $a$ and is maintained at a potential $V_{0}$ ．The outer conductor has an inner radius $b$ and is grounded．Determine the potential distribution in the space between the conductors．［電信特考］
（Sol．）$V(b)=0, V(a)=V_{0} \Rightarrow C_{1} \ln (b)+C_{2}=0, C_{1} \ln (a)+C_{2}=V_{0}$


$$
C_{1}=\frac{V_{0}}{\ln (b / a)}, C_{2}=-\frac{V_{0} \ln b}{\ln (b / a)}, \therefore \quad V(r)=\frac{V_{0}}{\ln (b / a)} \ln \left(\frac{r}{b}\right)
$$

Eg．Two infinite insulated conducting planes maintained at potentials 0 and $V_{0}$ form a wedge－shaped configuration．Determine the potential distributions for the regions： $\begin{aligned} & (a) 0<\phi<\alpha \\ & (b) \alpha<\phi<2 \pi\end{aligned}$ ．［中央光電所，成大電研］

（a）$V(\varphi)=A \varphi+B,\left\{\begin{array}{l}V(0)=0 \Rightarrow B_{0}=0 \\ V(\alpha)=V_{0}=A_{0} \alpha \Rightarrow A_{0}=\frac{V_{0}}{\alpha}\end{array} \Rightarrow V(\phi)=\frac{V_{0}}{\alpha} \phi, 0 \leq \phi \leq \alpha\right.$
（b）$\left\{\begin{array}{l}V(\alpha)=V_{0}=A_{1} \alpha+B_{1} \\ V(2 \pi)=0=2 \pi A_{1}+B_{1}\end{array} \Rightarrow A_{1}=-\frac{V_{0}}{2 \pi-\alpha}, B_{1}=\frac{2 \pi V_{0}}{2 \pi-\alpha} \Rightarrow V(\phi)=\frac{V_{0}}{2 \pi-\alpha}(2 \pi-\phi)\right.$ ，
$\alpha \leq \phi \leq 2 \pi$

Eg．An infinitely long，thin，conducting circular tube of radius $b$ is split in two halves．The upper half is kept at a potential $V=V$ and the lower half at $V=-V o$ ．

Determine the potential distributions both inside and outside the tube．
（Sol．）$V(b, \phi)=\left\{\begin{array}{l}V_{0}, 0<\phi<\pi \\ -V_{0}, \pi<\varphi<2 \pi\end{array}\right.$
（a）Inside the tube：$r<b \Rightarrow V_{n}(r, \phi)=A_{n} r^{n} \sin n \phi \Rightarrow V(r, \phi)=\sum_{n=1}^{\infty} A_{r^{n}} \sin n \phi$
$r=b \Rightarrow \sum_{n=1}^{\infty} A_{n} b^{n} \sin n \phi=\left\{\begin{array}{l}V_{0}, 0<\phi<\pi \\ -V_{0}, \pi<\phi<2 \pi\end{array}\right.$
$\Rightarrow A_{n}=\left\{\begin{array}{l}\frac{4 V_{0}}{n \pi b^{n}}, n: \text { odd } \\ 0, n: \text { even }\end{array} \Rightarrow V(r, \varphi)=\frac{4 V_{0}}{\pi} \sum_{n=\text { odd }}^{\infty} \frac{1}{n}\left(\frac{r}{b}\right)^{n} \sin n \varphi, r<b\right.$

（b）Outside the tube：$r>b \Rightarrow V_{n}(r, \phi)=B_{n} r^{-n} \sin n \phi \Rightarrow V(r, \phi)=\sum_{n=1}^{\infty} B_{n} r^{-n} \sin n \phi$ $r=b \Rightarrow \sum_{n=1}^{\infty} B_{n} b^{-n} \sin n \phi=\left\{\begin{array}{l}V_{0}, 0<\phi<\pi \\ -V_{0}, \pi<\phi<2 \pi\end{array}\right.$
$\Rightarrow B_{n}=\left\{\begin{array}{l}\frac{4 V_{0} b^{n}}{n \pi}, n: \text { odd } \\ 0, n: \text { even }\end{array} \Rightarrow V(r, \varphi)=\frac{4 V_{0}}{\pi} \sum_{n=\text { odd }}^{\infty} \frac{1}{n}\left(\frac{b}{r}\right)^{n} \sin n \varphi, r>b\right.$

Eg．A long，grounded conducting cylinder of radius $b$ is placed along the $z$－axis in an initially uniform electric field $\vec{E}=\hat{x} E_{0}$ ．Determine potential distribution $V(r, \varphi)$ and electric field intensity $\vec{E}(r, \phi)$ outside the cylinder．Show that the electric field intensity at the surface of the cylinder may be twice as high as that in the distance，which may cause a local breakdown or corona（St．Elmo＇s fire．） ［中央光電所，高考］
（Sol．）$V(r, \phi)=-E_{0} r \cos \phi+\sum_{n=1}^{\infty} B_{n} r^{-n} \cos n \phi\left(\right.$ At $\left.r \gg b, \vec{E}=\hat{x} E_{0}, V=-E_{0} r \cos \phi\right)$
At $r=b: V(r, \phi)=-E_{0} b \cos \phi+\sum_{n=1}^{\infty} B_{n} b^{-n} \cos n \phi=0 \Rightarrow B_{1}=E_{0} b^{2}, B_{n}=0$ for $n \neq 1$ ．
Outside the cylinder，$r \geq b: V(r, \phi)=-E_{0} r\left(1-\frac{b^{2}}{r^{2}}\right) \cos \phi$

$$
\stackrel{\rightharpoonup}{E}(r, \varphi)=-\nabla V=\hat{a}_{r} E_{0}\left(\frac{b^{2}}{r^{2}}+1\right) \cos \varphi+\hat{a}_{\phi} E_{0}\left(\frac{b^{2}}{r^{2}}-1\right) \sin \varphi
$$

## 4-4 Boundary-Value Problems in Spherical Coordinates

$\nabla^{2} V=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0$
Assume $\varphi$-independent: $\frac{\partial^{2}}{\partial^{2} \phi}=0, V(r, \theta)=R(r) \Theta(\theta)$
$r^{2} \frac{d^{2} R(r)}{d r^{2}}+2 r \frac{d R(R)}{d r}-k^{2} R(r)=0, \frac{d}{d \theta}\left[\sin \theta \frac{d \Theta(\theta)}{d \theta}\right]+n(n+1) \Theta(\theta) \sin (\theta)=0$, and $k^{2}=n(n+1) \rightarrow R(\mathrm{r})=A_{\mathrm{n}} r^{\mathrm{n}}+B_{\mathrm{n}} r^{-\mathrm{n}-1}, \Theta(\theta)=P_{\mathrm{n}}(\cos \theta) \rightarrow V(r, \theta)=\left[A_{\mathrm{n}} r^{\mathrm{n}}+B_{\mathrm{n}} r^{-\mathrm{n}-1}\right] P_{\mathrm{n}}(\cos \theta)$

Table of Legendre's Polynomials

| $n$ | $P_{n}(\cos \theta)$ |
| :---: | :---: |
| 0 | 1 |
| 1 | $\cos \theta$ |
| 2 | $\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)$ |
| 3 | $\frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)$ |

Eg. An infinite conducting cone of half-angle $\alpha$ is maintained at potential $V_{0}$ and insulated from a grounded conducting plane. Determine (a) the potential distribution $V(\theta)$ in the region $\alpha<\theta<\pi / 2$, (b) the electric field intensity in the region $\alpha<\theta<\pi / 2$, (c) the charge densities on the cone surface and on the grounded plane.
(Sol.)
$\frac{d}{d \theta}\left(\sin \theta \frac{d V}{d \theta}\right)=0, \frac{d V}{d \theta}=\frac{C_{1}}{\sin \theta} \Rightarrow V(\theta)=C_{1} \ln \left(\tan \frac{\theta}{2}\right)+C_{2}$

(a) $\begin{aligned} V(\alpha) & =C_{1} \ln \left(\tan \frac{\alpha}{2}\right)+C_{2}=V_{0} \\ V\left(\frac{\pi}{2}\right)=C_{1} \ln \left(\tan \frac{\pi}{4}\right)+C_{2}=0 & C_{1}=\frac{V_{0}}{\ln =0}\left[\tan \left(\frac{\alpha}{2}\right)\right]\end{aligned} \quad V(\theta)=\frac{V_{0} \ln \left[\tan \left(\frac{\theta}{2}\right)\right]}{\ln \left[\tan \left(\frac{\alpha}{2}\right)\right]}$
(b) $\stackrel{\rightharpoonup}{E}=-\hat{a}_{\theta} \frac{d V}{R d \theta}=-\hat{a}_{\theta} \frac{V_{0}}{R \operatorname{Ren}\left[\tan \left(\frac{\alpha}{2}\right)\right] \sin \theta}$,

$$
\begin{aligned}
& \theta=\alpha: \rho_{s}=\varepsilon_{0} E(\alpha)=\frac{\varepsilon_{0} V_{0}}{\operatorname{R\ell n}\left[\tan \left(\frac{\alpha}{2}\right)\right] \sin \theta} \\
& \theta=\frac{\pi}{2}: \rho_{s}=-\varepsilon_{0} E\left(\frac{\pi}{2}\right)=-\frac{\varepsilon_{0} V_{0}}{\operatorname{R\ell n}\left[\tan \left(\frac{\alpha}{2}\right)\right]}
\end{aligned}
$$

Eg．An uncharged conducting sphere of radius $\boldsymbol{b}$ is placed in an initially uniform electric field $\vec{E}=\hat{z} E_{0}$ ．Determine the potential distribution $V(R, \theta)$ and the electric field intensity $\vec{E}(R, \theta)$ after the introduction of the sphere．［中山電研］ （Sol．）$V(b, \theta)=0$
If $R \gg b, V(R, \theta)=-E_{0} z=-E_{0} R \cos \theta$

$$
\left.\begin{array}{rl}
V(R, \theta) & =\sum_{n=0}^{\infty}\left[A_{n} R^{n}+B_{n} R^{-(n+1)}\right] P_{n}(\cos \theta), \quad R \geq b \\
\left(\begin{array}{c}
A_{n} \\
A_{1}
\end{array}=-E_{0}\right.
\end{array}\right) .
$$


（ sphere is uncharged，$B_{0}=0$ ）

$$
=\left(\frac{B_{1}}{R^{2}}-E_{0} R\right) \mathrm{cos} \theta+\sum_{n=2}^{\infty} B_{n} R^{-(n+1)} P_{n}(\mathrm{cos} \theta), R \geq b
$$

$$
R=b, 0=\left(\frac{B_{1}}{b^{2}}-E_{0} b\right) \cos \theta+\sum_{n=2}^{\infty} B_{n} b^{-(n+1)} P_{n}(\cos \theta) \Rightarrow B_{1}=E_{0} b^{3}, \quad B_{n}=0, n \geq 2,
$$

$\therefore V(R, \theta)=-E_{0}\left[1-\left(\frac{b}{R}\right)^{3}\right] R \cos \theta, R \geq b$

$$
\begin{aligned}
& \vec{E}(R, \theta)=\hat{a}_{R} E_{R}+\hat{a}_{\theta} E_{\theta}=-\nabla V(R, \theta)=\hat{a}_{R}\left(-\frac{\partial V}{\partial R}\right)+\hat{a}_{\theta}\left(-\frac{\partial V}{R \partial \theta}\right) \\
& =\hat{a}_{R} E_{0}\left[1+2\left(\frac{b}{R}\right)^{3}\right] \cos \theta-\hat{a}_{\theta} E_{0}\left[1-\left(\frac{b}{R}\right)^{3}\right] \sin \theta, R \geq b
\end{aligned}
$$

A dipole moment $\vec{P}=\hat{z} 4 \pi \varepsilon_{0} b^{2} E_{0}$ is at the center of the sphere．Surface charge density is $\rho_{s}(\theta)=\varepsilon_{0} E_{R \mid R=b}=3 \varepsilon_{0} E_{0} \cos \theta$

## 4－5 Capacitors and Capacitances

$$
Q=C V \Leftrightarrow C=Q / V
$$

Eg．A parallel－plane capacitor consists of two parallel conducting plates of area $S$ separate by uniform distance $d$ ，the space between the plates is filled with a dielectric of a constant permittivity．Determine the capacitance．
（Sol．）$\rho_{s}=\frac{Q}{S}, \vec{E}=-\hat{y} \frac{\rho_{s}}{\varepsilon}=-\hat{y} \frac{Q}{\varepsilon S}$
$V=-\int_{y=0}^{y=d} \vec{E} \cdot d \vec{l}=\int_{0}^{d}\left(-\hat{y} \frac{Q}{\varepsilon S}\right) \cdot(\hat{y} d v)=\frac{Q}{\varepsilon S} d$

$C=\frac{Q}{V}=\varepsilon \frac{S}{d}$ ．In this problem，$\vec{E}=-\hat{y} \frac{V}{d}$

Eg．A cylindrical capacitor consists of an inner conductor of radius $a$ and an outer conductor of radius $b$ is filled with a dielectric of permittivity $\varepsilon$ ，and the length of the capacitor is $L$ ．Determine the capacitance of this capacitor．
（Sol．）$\vec{E}=\hat{a_{r}} E_{r}=\frac{Q}{2 \pi \varepsilon L r}$ ，

$$
\begin{aligned}
& V_{a b}=-\int_{r=b}^{r=a} \vec{E} \cdot d \vec{l}=-\int_{b}^{a}\left(\hat{a_{r}} \frac{Q}{2 \pi \varepsilon L r}\right) \cdot\left(\hat{a_{r}} d r\right) \\
& =\frac{Q}{2 \pi \varepsilon L} \ln \left(\frac{b}{a}\right), \quad C=\frac{Q}{V_{a b}}=\frac{2 \pi \varepsilon L}{\ln \left(\frac{b}{a}\right)}
\end{aligned}
$$



Eg．A cylindrical capacitor of length $L$ consists of coaxial conducting surface of radii $r_{i}$ and $r_{0}$ ．Two dielectric media of different dielectric constants $\varepsilon_{r 1}$ and $\varepsilon_{r 2}$ ， and fill the space between the conducting surface．Determine the capacitance．［台大物理所，高考電機技師］
（Sol．）$\quad \pi r L\left(\varepsilon_{0} \varepsilon_{r 1}+\varepsilon_{0} \varepsilon_{r 2}\right) E=\rho_{l} L \Rightarrow E=\frac{\rho_{l}}{\pi r \varepsilon_{0}\left(\varepsilon_{r 1}+\varepsilon_{r 2}\right)}$

$$
\begin{aligned}
V & =-\int_{r_{o}}^{r_{i}} E d r=\frac{\rho_{l}}{\pi \varepsilon_{0}\left(\varepsilon_{r 1}+\varepsilon_{r 2}\right)} \ln \left(\frac{r_{o}}{r_{i}}\right) \\
C & =\frac{\rho_{l} L}{V}=\frac{\pi \varepsilon_{0}\left(\varepsilon_{r 1}+\varepsilon_{r 2}\right) L}{\ln \left(r_{o} / r_{i}\right)}
\end{aligned}
$$



Eg．A spherical capacitor consists of an inner conducting sphere of radius $R_{i}$ and an outer conductor with a spherical wall of radius $R_{0}$ ．The space in between them is filled with dielectric of permittivity $\varepsilon$ ．Determine the capacitance．Assuming the earth to be a large conducting sphere（radius $=6.37 \times 10^{3} \mathrm{~km}$ ）surrounded by air， find the capacitance of the earth and the maximum charge that can exist on the earth before the air breaks down．
（Sol．）$\vec{E}=\hat{a_{r}} E_{r}=\hat{a_{r}} \frac{Q}{4 \pi \varepsilon R^{2}}$

$$
\begin{aligned}
V & =-\int_{R_{o}}^{R_{i}} \vec{E} \cdot\left(\hat{a_{r}} d R\right)=-\int_{R_{o}}^{R_{i}} \frac{Q}{4 \pi \varepsilon R^{2}} d R=\frac{Q}{4 \pi \varepsilon}\left(\frac{1}{R_{i}}-\frac{1}{R_{o}}\right) \\
C & =\frac{Q}{V}=\frac{4 \pi \varepsilon}{\frac{1}{R_{i}}-\frac{1}{R_{o}}} .
\end{aligned}
$$



For an isolating conductor sphere with $R_{i}, R_{o} \rightarrow \infty, C=4 \pi \varepsilon R_{i}$

$$
\begin{equation*}
C=4 \pi \varepsilon_{0} R=4 \pi \times \frac{1}{36 \pi} \times 10^{-9} \times\left(6.37 \times 10^{3} \times 10^{3}\right)=7.08 \times 10^{-4} \tag{F}
\end{equation*}
$$

$$
\begin{equation*}
E_{b}=3 \times 10^{6}=\frac{Q_{M a x}}{4 \pi \varepsilon_{0} R^{2}} \Rightarrow Q_{M a x}=1.35 \times 10^{10} \tag{C}
\end{equation*}
$$

Eg．Determine the capacitance per unit length between two long，parallel，circular conducting wires of radius $a$ ．The axes of the wires are separated by a distance $\boldsymbol{D}$ ．［台大電研］

（Sol．）$V_{2}=\frac{\rho_{\ell}}{2 \pi \varepsilon} \ln \frac{a}{d}, V_{1}=-\frac{\rho_{\ell}}{2 \pi \varepsilon} \ln \frac{a}{d}$

$$
\begin{array}{r}
C=\frac{\rho_{\ell}}{V_{1}-V_{2}}=\frac{\pi \varepsilon}{\ln (d / a)}, d=D-d_{i}=D-\frac{a^{2}}{d}, \quad d=\frac{1}{2}\left(D+\sqrt{D^{2}-4 a^{2}}\right) \\
C=\frac{\pi \varepsilon}{\ln \left[(D / 2 a)+\sqrt{(D / 2 a)^{2}-1}\right]}=\frac{\pi \varepsilon}{\cosh ^{-1}(D / 2 a)}(\mathrm{F} / \mathrm{m})
\end{array}
$$

Eg．A straight conducting wire of radius $a$ is parallel to and at height $\boldsymbol{l}$ from the surface of the earth．Assume that the earth is perfectly conducting；determine the capacitance and the force per unit length between the wire and the earth．
（Sol．）$D=2 h, C=\frac{\pi \varepsilon_{0}}{\cosh ^{-1}(D / 2 a)}=\frac{\pi \varepsilon_{0}}{\cosh ^{-1}(h / a)}(F / m)$

## 4－6 Electrostatic Energy

To remove $Q_{1}$ from infinite to a distance $R_{12}$ from $Q_{2}$ ，the amount of work required is

$$
W_{2}=Q_{2} V_{2}=Q_{2} \frac{Q_{1}}{4 \pi \varepsilon_{0} R_{12}}=Q_{1} \frac{Q_{2}}{4 \pi \varepsilon_{0} R_{12}}=Q_{1} V_{1}=\frac{1}{2}\left(Q_{1} V_{1}+Q_{2} V_{2}\right)
$$

$$
\xrightarrow{\substack{\text { induction } \\ \text { method }}} W_{e}=\frac{1}{2} \sum_{k=1}^{N} Q_{k} V_{k} \text {, where } V_{k}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{j=1(j \neq k)}^{N} \frac{Q_{j}}{R_{j k}}
$$

Eg．Find the energy required to assemble a uniform charge of radius $b$ and volume charge density $\rho$ ．［清大電研］
（Sol．）$V_{R}=\frac{Q_{R}}{4 \pi \varepsilon_{0} R} \quad Q_{R}=\rho \frac{4}{3} \pi R^{3}$
$d Q_{R}=\rho 4 \pi R^{2} d R, d W=V_{R} d Q_{R}=\frac{4 \pi}{3 \varepsilon_{0}} \rho^{2} R^{4} d R$
$W=\int d W=\frac{4 \pi}{3 \varepsilon_{0}} \rho^{2} \int_{0}^{b} R^{4} d R=\frac{4 \pi \rho^{2} b^{5}}{15 \varepsilon_{0}}$


$$
\begin{equation*}
Q=\rho \frac{4 \pi}{3} b^{3}, W=\frac{3 Q^{2}}{20 \pi \varepsilon_{0} b} \tag{J}
\end{equation*}
$$

Eg．According to $W_{\mathrm{e}}=\frac{1}{2} \iiint_{V^{\prime}} \rho V d v=\frac{1}{2} \iiint_{v^{\prime}}(\nabla \cdot \vec{D}) V d v$ ，show that the stored electric energy is $W_{e}=\frac{1}{2} \iiint_{v^{\prime}} \vec{D} \cdot \vec{E} d v$
（Proof）$\because \nabla \cdot(V \vec{D})=V \nabla \cdot \vec{D}+\vec{D} \cdot \nabla V, \therefore V \nabla \cdot \vec{D}=\nabla \cdot(V \vec{D})-\vec{D} \cdot \nabla V$
$\therefore W_{e}=\frac{1}{2} \iiint_{v^{\prime}} \nabla \cdot(V \vec{D}) d v-\frac{1}{2} \iiint_{v^{\prime}} \vec{D} \cdot \nabla V d v=\frac{1}{2} \oiint \oiint_{s^{\prime}} V \vec{D} \cdot \hat{a_{n}} d s+\frac{1}{2} \iiint_{v^{\prime}} \vec{D} \cdot \vec{E} d v$
When $R \rightarrow \infty, S \propto R^{2}, V \propto \frac{1}{R},|\vec{D}| \propto \frac{1}{R^{2}} \Rightarrow \frac{1}{2} \oiint \oiint_{s^{\prime}} V \vec{D} \cdot \hat{a_{n}} d s \rightarrow 0 \Rightarrow W_{e}=\frac{1}{2} \iiint_{v^{\prime}} \vec{D} \cdot \vec{E} d v$
If $\vec{D}=\varepsilon \vec{E}$ ，then $W_{e}=\frac{1}{2} \iiint_{v^{\prime}} \varepsilon|\vec{E}|^{2} d v=\frac{1}{2} \iiint_{v^{\prime}} \frac{|\vec{D}|^{2}}{\varepsilon} d v=\iiint_{v^{\prime}} w_{e} d v$
Note：1．SI unit for energy：Joule $(J)$ and $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ ．
2．Work（or energy）is a scalar，not a vector．
Electrostatic energy density：$w_{\mathrm{e}}=\frac{1}{2} \vec{D} \cdot \vec{E}=\frac{1}{2} \varepsilon|\vec{E}|^{2}=\frac{|\vec{D}|^{2}}{2 \varepsilon}$

Eg. A parallel-plate capacitor of area $S$ and separation $d$ is charged by a $d-c$ voltage source $V$. The permittivity of the dielectric is $\varepsilon$. Find the stored electrostatic energy.
(Sol.) $E=\frac{V}{d}$,
$W_{e}=\frac{1}{2} \iiint_{v^{\prime}} \varepsilon\left(\frac{V}{d}\right)^{2} d v=\frac{1}{2} \varepsilon\left(\frac{V}{d}\right)^{2}(S d)=\frac{1}{2}\left(\varepsilon \frac{S}{d}\right) V^{2}$


Eg. Use energy formulas to find the capacitance of a cylindrical capacitance having a length $L$, an inner conductor of radius $a$, an outer conductor of inner radius $b$, and dielectric of permittivity $\varepsilon$.
(Sol.) $\vec{E}=\hat{a_{r}} \frac{Q}{2 \pi \varepsilon L r}, W_{e}=\frac{1}{2} \int_{a}^{b} \varepsilon\left(\frac{Q}{2 \pi \varepsilon L r}\right)^{2}(L 2 \pi r d r)=\frac{Q^{2}}{4 \pi \varepsilon L} \int_{a}^{b} \frac{d r}{r}=\frac{Q^{2}}{4 \pi \varepsilon L} \ln \left(\frac{b}{a}\right)$,
$\frac{Q^{2}}{2 C}=\frac{Q^{2}}{4 \pi \varepsilon L} \ln \left(\frac{b}{a}\right) \Rightarrow C=\frac{2 \pi \varepsilon L}{\ln \left(\frac{b}{a}\right)}$


## 4-7 Electrostatic Forces and Torques

Electrostatic force and torque due to the fixed charge:
$d W=\vec{F}_{Q} \cdot d \vec{l}$ is mechanic work done by the system, it costs the stored energy.

$$
\begin{aligned}
& \because d W_{e}=-d W=-\vec{F}_{Q} \cdot d \vec{l}=\left(\nabla W_{e}\right) \cdot d \vec{l}, \therefore \vec{F}_{Q}=-\nabla W_{e} \\
& \left(\vec{F}_{Q}\right)_{l}=-\frac{\partial W_{e}}{\partial l}=-\frac{\partial}{\partial l}\left(\frac{Q^{2}}{2 C}\right)=\frac{Q^{2}}{2 C^{2}} \frac{\partial C}{\partial l}, d W=\left(T_{Q}\right)_{z} d \phi \Rightarrow\left(T_{Q}\right)_{z}=-\frac{\partial W_{e}}{\partial \phi}
\end{aligned}
$$

Electrostatic force and torque due to the fixed potential:

$$
\begin{aligned}
& d W_{s}=\sum_{k} V_{k} d Q_{k}, d W=\vec{F}_{v} \cdot d \vec{l}, d W_{e}=\frac{1}{2} \sum_{k} V_{k} d Q_{k}=\frac{1}{2} d W_{s} \\
& \quad d W+d W_{e}=d W_{s} \Rightarrow d W=\frac{1}{2} d W_{s}=d W_{e}=\overrightarrow{F_{v}} \cdot d \vec{l}=\left(\nabla W_{e}\right) \cdot d \vec{l} \\
& \therefore \vec{F}_{v}=\nabla W_{e}, \quad\left(T_{v}\right)_{z}=\frac{\partial W_{e}}{\partial \phi},\left(\vec{F}_{v}\right)_{l}=\frac{\partial W_{e}}{\partial l}=\frac{\partial}{\partial l}\left(\frac{1}{2} C V^{2}\right)=\frac{V^{2}}{2} \frac{\partial C}{\partial l}=\frac{Q^{2}}{2 C^{2}} \frac{\partial C}{\partial l}
\end{aligned}
$$

Eg．A parallel－plate capacitor of width $w$ ，length $L$ ，and separation $d$ has a solid dielectric slab of permittivity $\varepsilon$ in the space between the plates．The capacitor is charged to a voltage $V_{0}$ by a battery．Assuming that the dielectric slab is withdrawn to the position shown，determine the force action on the slab．（a）with the switch closed，（b）after the switch is first opened．［台大電研，清大電研］
（Sol．）（a）$W_{e}=\frac{1}{2} C V_{0}^{2}, C=\frac{w}{d}\left[\varepsilon x+\varepsilon_{0}(L-x)\right] \Rightarrow \stackrel{\rightharpoonup}{F}_{x}=\nabla W_{e}=\hat{x} \frac{V_{0}^{2}}{2} \frac{\partial C}{\partial x}=\hat{x} \frac{V_{0}^{2} w}{2 d}\left(\varepsilon-\varepsilon_{0}\right)$
（b）
$W_{0}=\frac{Q^{2}}{2 C}, \vec{F}_{Q}=-\nabla W_{0}=-\hat{x} \frac{Q^{2}}{2} \frac{\partial}{\partial x}\left(\frac{1}{C}\right)=\hat{x} \frac{V_{0}^{2} w}{2 d}\left(\varepsilon-\varepsilon_{0}\right)$


## 4－8 Resistors and Resistances

Ohm＇s law：$V=R I$
$V=E \ell \Rightarrow E=\frac{V}{\ell}, I=\iint_{s} \vec{J} \cdot d \vec{S}=J S \Rightarrow J=\frac{I}{S}=\sigma \frac{V}{\ell} \Rightarrow V=\left(\frac{\ell}{\sigma S}\right) I=R I$
$\therefore R=\frac{\ell}{\sigma S}, G=\frac{1}{R}=\sigma \frac{S}{\ell}$
Power dissipation：$\quad P=\iiint_{v^{\prime}} \vec{E} \cdot \vec{J} d v=\int \vec{E} \cdot d \vec{\ell} \iint_{s s} \vec{J} \cdot d \vec{S}=-V I=-I^{2} R$

Eg．A $d-c$ voltage of 6 V applied to the ends of 1 km of a conducting wire of 0.5 mm radius results in a current of $1 / 6 \mathrm{~A}$ ．Find（a）the conductivity of the wire，（b）the electric field intensity of the wire，（c）the power dissipation in the wire，（d）the electron drift velocity，assuming electron mobility in the wire to be $1.4 \times 10^{-3}\left(\mathrm{~m}^{2} / \mathrm{V} \cdot \mathrm{s}\right)$ ．
（Sol．）（a）$R=\frac{\ell}{\sigma S}=\frac{V}{I} \Rightarrow \sigma=\frac{\ell I}{S V}=3.54 \times 10^{7}(\mathrm{~S} / \mathrm{m})$ ，（b）$E=\frac{V}{\ell}=6 \times 10^{-3}(\mathrm{~V} / \mathrm{m})$ ，
$P=V I=1$ Watt，（d）$v_{e}=\mu E=8.4 \times 10^{-6}(\mathrm{~m} / \mathrm{sec})$

Calculation of resistance：
$\nabla^{2} V=0 \Rightarrow V \Rightarrow \vec{E}=-\nabla V \Rightarrow \vec{J}=\sigma \vec{E} \Rightarrow \vec{I}=\oiint \vec{J} d s \Rightarrow R=V / I$
Eg．A conducting material of uniform thickness $h$ and conductivity $\sigma$ ，has the shape of a quarter of a flat circular washer，with inner radius $a$ and outer radius $b$ ．Determine the resistance between the end faces．［清大電研］
（Sol．）$\nabla^{2} V=0, V=0$ at $\phi=0, V=V_{0}$ at $\phi=\frac{\pi}{2}$
$\frac{d^{2} V}{d \phi^{2}}=0, V=c_{1} \varphi+c_{2}, \quad V=\frac{2 V_{0}}{\pi} \phi$,
$\vec{J}=\sigma \vec{E}=-\sigma \nabla V=-\hat{a}_{\phi} \sigma \frac{\partial V}{r \partial \phi}=-\hat{a}_{\phi} \frac{2 \sigma V_{0}}{\pi r}$

$I=\int_{\mathrm{S}} \overrightarrow{\mathrm{J}} \cdot \mathrm{d} \vec{s}=\frac{2 \sigma V_{0}}{\pi} h \int_{a}^{b} \frac{d r}{r}=\frac{2 \sigma h V_{0}}{\pi} \ln \frac{b}{a}, \quad R=\frac{V_{0}}{I}=\frac{\pi}{2 \sigma h \ln \left(\frac{b}{a}\right)}$

Eg．A ground connection is made by burying a hemispherical conductor of radius $\mathbf{2 5 m m}$ in the earth with its base up．Assuming the earth conductivity to $\sigma=\mathbf{1 0}^{-6}$ $S / m$ ，find the resistance of the conductor to far－away points in the ground．［交大電信所 $]$
（Sol．）$\vec{J}=\hat{a}_{R} \frac{I}{2 \pi R^{2}}, \vec{E}=\hat{a}_{R} \frac{I}{2 \pi \sigma R^{2}}=>V_{0}=-\int_{\infty}^{b} E d R=\frac{I}{2 \pi \sigma b}$
$R=\frac{V_{0}}{I}=\frac{1}{2 \pi \sigma b}=\frac{1}{2 \pi\left(10^{-6}\right)\left(25 \times 10^{-3}\right)}=6.36 \times 10^{6}$.
Relation between $R$ and $C: C=\frac{Q}{V}=\frac{\oiint_{s} \vec{D} \cdot d \vec{s}}{-\int_{\mathrm{L}} \vec{E} \cdot d \vec{l}}=\frac{\oiint \varepsilon \vec{E} \cdot d \vec{s}}{-\int_{\mathrm{L}} \vec{E} \cdot d \vec{l}}$ ，
$R=\frac{V}{I}=\frac{-\int_{\mathrm{L}} \vec{E} \cdot d \vec{l}}{\oiint_{\mathrm{S}} \vec{J} \cdot d \vec{s}}=\frac{-\int_{\mathrm{L}} \vec{E} \cdot d \vec{l}}{\oiint_{\mathrm{S}} \sigma \vec{E} \cdot d \vec{s}}, \therefore R C=\frac{C}{G}=\frac{\varepsilon}{\sigma}$

Eg．Find the resistance between two concentric spherical surfaces of radii $\boldsymbol{R}_{1}$ and $R_{2}\left(R_{1}<R_{2}\right)$ if the space between the surfaces is filled with a homogeneous and isotropic material having a conductivity $\sigma$ ．
（Sol．）$C=\frac{4 \pi \varepsilon}{\frac{1}{R_{1}}-\frac{1}{R_{2}}}, R C=\frac{\varepsilon}{\sigma} \Rightarrow R=\frac{1}{C} \cdot \frac{\varepsilon}{\sigma} \Rightarrow R=\frac{1}{4 \pi \sigma}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
Eg．Find the leakage resistance per unit length（a）between the inner and outer conductors of a coaxial cable that has an inner conductor of radius $a$ ，an outer conductor of inner radius $b$ ，and a medium with conductivity $\sigma$ ，and（b）of a parallel－wire transmission line consisting of wires of radius $a$ separated by a distance $D$ in a medium with conductivity $\sigma$ ．［台科大電研］
（Sol．）
（a）$C=\frac{2 \pi \varepsilon}{\ln \left(\frac{b}{a}\right)}, \quad R=\frac{\varepsilon}{\sigma C}=\frac{1}{2 \pi \sigma} \ln \left(\frac{b}{a}\right)$ ，（b）$C=\frac{\pi \varepsilon}{\cosh ^{-1}\left(\frac{D}{2 a}\right)}, \quad R=\frac{\varepsilon}{\sigma C}=\frac{1}{\pi \sigma} \cosh ^{-1}\left(\frac{D}{2 a}\right)$

## 4－9 Inductors and Inductances

Mutual flux：$\Phi_{12}=\iint_{S_{2}} \vec{B}_{1} \cdot \mathrm{~d} \vec{S}_{2}=L_{12} I_{1}$
General mutual inductance：$L_{12}=\frac{N_{2} \Phi_{12}}{I_{1}}=\frac{\Lambda_{12}}{I_{1}} \quad(H)$
Self－Inductance：$L_{11}=\frac{\Lambda_{11}}{I_{1}}$
Neumaun formula：$L_{12}=\frac{\mu_{0} N_{1} N_{2}}{4 \pi} \oint \oint_{C_{1} C_{2}} \frac{d \overrightarrow{\ell_{1}} \vec{d}_{2}}{R}$

$$
\begin{aligned}
L_{12}= & \frac{N_{2} \Phi_{12}}{I_{1}}=\frac{N_{2}}{I_{1}} \iint_{S} \vec{B}_{1} \cdot d \vec{S}_{2}=\frac{N_{2}}{I_{1}} \iint_{S_{2}}\left(\nabla \times \vec{A}_{1}\right) \cdot d \vec{S}_{2}=\frac{N_{2}}{I_{1}} \oint_{C_{2}} \vec{A}_{1} \cdot d \vec{\ell}_{2} \\
& \because \vec{A}_{1}=\frac{\mu_{0} N_{1} I_{1}}{4 \pi} \oint_{C_{1}} \frac{d \vec{\ell}_{1}}{R_{1}}, \therefore L_{12}=\frac{\mu_{0} N_{1} N_{2}}{4 \pi} \oint_{C_{1} C_{2}} \oint \frac{d \vec{\ell}_{1} d \vec{\ell}_{2}}{R}
\end{aligned}
$$

Eg．Assume that $N$ turns of wire are tightly wound on a toroidal frame of a rectangular cross section．Then，assuming the permeability of the medium to be $\mu 0$ ，find the self－inductance of the toroidal coil．［台大電研］ （Sol．）
$\mathrm{d} \vec{l}=\hat{a}_{\phi} r d \phi, \oint_{C} \vec{B} \cdot \mathrm{~d} \vec{l}=\int B r \mathrm{~d} \phi=2 \pi r B=\mu_{o} N I \Rightarrow B=\frac{\mu_{o} N I}{2 \pi r}$
$\Rightarrow \Phi=\iint_{S} \vec{B} \cdot \mathrm{~d} \vec{s}=\frac{\mu_{o} N I h}{2 \pi} \int_{a}^{b} \frac{\mathrm{~d} r}{r}=\frac{\mu_{o} N I h}{2 \pi} \ln \left(\frac{b}{a}\right)$

$L=\frac{N \Phi}{I}=\frac{\mu_{o} N^{2} h}{2 \pi} \ln \left(\frac{b}{a}\right)$
Eg．Find the inductance per unit length of a very long solenoid with air core having $\boldsymbol{n}$ turns per unit length．And $S$ is the cross－sectional area．
（Sol．）$B=\mu_{o} n I, \quad \Phi=B S=\mu_{o} n S I \quad \wedge^{\prime}=n \Phi=\mu_{o} n^{2} S I, \quad L^{\prime}=\mu_{o} n^{2} S$


Eg．Two coils of $N_{1}$ and $N_{2}$ turns are wound concentrically on a straight cylindrical core of radius $a$ and permeability $\mu$ ．The windings have lengths $l_{1}$ and $l_{2}$ ，respectively．Find the mutual inductance between the coils．
（Sol．）$\Phi_{12}=\mu\left(\frac{N_{1}}{\ell_{1}}\right)\left(\pi a^{2}\right) I_{1}, \Lambda_{12}=N_{2} \Phi_{12}=\frac{\mu}{\ell_{1}} N_{1} N_{2} \pi a^{2} I_{1}$
$\Rightarrow L_{12}=\frac{\Lambda_{12}}{I_{1}}=\frac{\mu}{\ell_{1}} N_{1} N_{2} \pi a^{2}$

Eg．Determine the mutual inductance between a very long，straight wire and a conducting circular loop．［台大電研，清大物理所］
（Sol．）
$B$ at $p$ is $\frac{\mu_{0} I}{2 \pi(d+r \cos \theta)}$
$\Lambda=\frac{\mu_{0} I}{2 \pi} \int_{0}^{b} \int_{0}^{2 \pi} \frac{r d \theta d r}{d+r \cos \theta}=\frac{\mu_{0} I}{2 \pi} \int_{0}^{b} \frac{2 \pi r d r}{\sqrt{d^{2}-r^{2}}}=\mu_{0} I\left(d-\sqrt{d^{2}-b^{2}}\right)$
$L=\mu_{0}\left(d-\sqrt{d^{2}-b^{2}}\right)$


Eg．Determine the mutual inductance between a conducting triangular loop and a very long straight wire．
（Sol．）
$\vec{B}=\hat{a}_{\varphi} \frac{\mu_{0} I}{2 \pi r}, \quad \Lambda=\Phi=\int_{S} \vec{B} \cdot d \stackrel{\rightharpoonup}{s}, \quad$ where $d \vec{S}=\hat{a}_{\phi} z d r$
$z=\sqrt{3}(d+b-r)$
$\Lambda=\frac{\sqrt{3} \mu_{0} I}{2 \pi} \int_{d+b}^{d+b} \frac{1}{r}(d+b-r) d r=\frac{\sqrt{3} \mu_{0} I}{2 \pi}[(d+b) \ln (1+b / d)-b]$
$L=\frac{\Lambda}{I}=\frac{\sqrt{3} \mu_{0}}{2 \pi}[(d+b) \ln (1+b / d)-b]$


Eg．Determine the mutual inductance between a very long，straight wire and a conducting equilateral triangular loop．［高考］
（Sol．）
$\vec{B}=\hat{a}_{\Phi} \frac{\mu_{0} I}{2 \pi r}=\hat{a}_{\Phi} B_{\Phi}$
$\Lambda=\int_{d}^{d+\frac{\sqrt{3}}{2} b} B_{\Phi} \cdot \frac{2}{\sqrt{3}}(r-d) d r=\frac{\mu_{0} I}{\sqrt{3} \pi}\left[\frac{\sqrt{3}}{2} b-d \ln \left(1+\frac{\sqrt{3} b}{2 d}\right)\right]$
$L=\frac{\Lambda}{I}=\frac{\mu_{0}}{\sqrt{3} \pi}\left[\frac{\sqrt{3}}{2} b-d \ln \left(1+\frac{\sqrt{3} b}{2 d}\right)\right]$


Eg. A rectangular loop of width $w$ and height $h$ is situated near a very long wire carrying a current $i_{1}$. Assume $i_{1}$ to be a rectangular pulse. Find the induced current $i_{2}$ in the rectangular loop whose self-inductance is $L$.
(Sol.)
$L_{12} \frac{d i_{1}}{d t}=L \frac{d i_{2}}{d t}+R i_{2}$,
where $L_{12}=\frac{\Phi_{12}}{i_{1}}=\frac{h}{i_{1}} \int_{d}^{d+w} \frac{\mu_{0} i_{1}}{2 \pi r} d r=\frac{\mu_{0} h}{2 \pi} \ln \left(1+\frac{w}{d}\right)$
$t=0, \quad L \frac{d i_{2}}{d t}+R i_{2}=L_{12} I_{1} \delta(t) \Rightarrow i_{2}=\frac{L_{12}}{L} I_{1} e^{-\left(\frac{R}{L}\right) t}$
$t=T, \quad i_{2}=\frac{L_{12}}{L} I_{1} e^{-\frac{R T}{L}}$, when $-I_{1}$ is applied

(a)


## 4-10 Magnetic Energy

$W_{\mathrm{m}}=\frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} L_{j k} I_{j} I_{k}=\frac{1}{2} \sum_{k=1}^{N} I_{k} \Phi_{k}=\frac{1}{2} \iiint_{V^{\prime}} \vec{A} \cdot \vec{J} d v^{\prime}$
Let $V_{1}=L_{1} \frac{d i_{1}}{d t} \Rightarrow W_{1}=\int V_{1} i_{1} d t=L_{1} \int_{0}^{L_{1}} i_{1} d i_{1}=\frac{1}{2} L_{1} I_{1}^{2}=\frac{1}{2} I_{1} \Phi_{1}$ : Magnetic energy

Similarly, $\quad V_{21}=L_{21} \frac{d i_{2}}{d t} \Rightarrow W_{21}=\int V_{21} I_{1} d t=L_{21} I_{1} \int_{0}^{I_{2}} d i_{2}=L_{21} I_{1} I_{2}$
And $W_{2}=\frac{1}{2} L_{2} I_{2}^{2} \Rightarrow W_{m}=\frac{1}{2} L_{1} I_{1}^{2}+L_{21} I_{1} I_{2}+\frac{1}{2} L_{2} I_{2}^{2}=\frac{1}{2} \sum_{j=1}^{2} \sum_{k=1}^{2} L_{j k} I_{j} I_{k}$
Generally, $\quad W_{m}=\frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} L_{j k} I_{j} I_{k}=\frac{1}{2} \sum_{k=1}^{N} I_{k} \Phi_{k} \quad$ when $\quad \Phi_{k}=\sum_{j=1}^{N} L_{j k} I_{j}$
$\because \Phi_{k}=\iint_{S_{k}} \vec{B} \cdot d \vec{S}_{n}{ }^{\prime}=\oint_{C_{k}} \vec{A} \cdot d \vec{\ell}_{k}$
$\therefore W_{m}=\frac{1}{2} \sum_{k=1}^{N} \Delta I_{k} \oint_{C_{k}} \vec{A} \cdot d \vec{l}_{k}=\frac{1}{2} \iint_{V^{\prime}} \vec{A} \cdot \vec{J} d v^{\prime} \quad\left(\Delta I_{k} d l_{k}{ }^{\prime}=J\left(\Delta \hat{a}_{k}{ }^{\prime}\right) d l_{k}{ }^{\prime}=J \cdot v_{k}{ }^{\prime}\right)$
$\because \nabla \cdot(\vec{A} \times \vec{H})=\vec{H} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{H}) \Rightarrow \vec{A} \cdot(\nabla \times \vec{H})=\vec{H} \cdot(\nabla \times \vec{A})-\nabla \cdot(\vec{A} \times \vec{H})$
And $\vec{J}=\nabla \times \vec{H} \Rightarrow \vec{A} \cdot \vec{J}=\vec{H} \cdot \vec{B}-\nabla \cdot(A \times \vec{H})$
$\Rightarrow W_{m}=\frac{1}{2} \iint_{V^{\prime}} \vec{H} \cdot \vec{B} d v^{\prime}-\frac{1}{2} \oint_{S^{\prime}}(\vec{A} \times \vec{H}) \cdot \vec{a}_{n} d S^{\prime} \quad$ as $\quad R \rightarrow \infty \Rightarrow|\vec{A}| \propto \frac{1}{R}, \quad|\vec{H}| \propto \frac{1}{R^{2}}$,
$d \vec{S} \propto R^{2} \Rightarrow-\frac{1}{2} \oint_{S^{\prime}}(\vec{A} \times \vec{H}) \cdot \hat{a}_{n} d S^{\prime} \rightarrow 0$
$\therefore W_{m}=\frac{1}{2} \iiint_{V^{\prime}} \vec{H} \cdot \vec{B} d v^{\prime}=\iiint_{V^{\prime}} w_{m} d v^{\prime}$

$$
w_{m}=\frac{1}{2} \vec{H} \cdot \vec{B}
$$

Magnetic energy density: $w_{m}=\frac{|B|^{2}}{2 \mu} \quad$ and $L=\frac{2 W_{m}}{I^{2}}$.

$$
w_{m}=\frac{1}{2} \mu|H|^{2}
$$

Eg．Determine the inductance per unit length of an air coaxial transmission line that has a solid inner conductor of radius $a$ and a very thin outer conductor of radius $b$ ．［台科大電機所］
（Sol．）
$W_{\mathrm{m} 1}=\frac{1}{2 \mu_{0}} \int_{0}^{a} B_{1}^{2} 2 \pi r d r=\frac{\mu_{0} I^{2}}{4 \pi a^{4}} \int_{0}^{a} r^{3} d r=\frac{\mu_{0} I^{2}}{16 \pi}$

$W_{\mathrm{m} 2}=\frac{1}{2 \mu_{0}} \int_{a}^{b} B_{2}^{2} 2 \pi r d r=\frac{\mu_{0} I^{2}}{4 \pi} \int_{a}^{b} \frac{1}{r} d r=\frac{\mu_{0} I^{2}}{4 \pi} \ln \frac{b}{a}, L^{\prime}=\frac{2}{I^{2}}\left(W_{m 1}+W_{m 2}\right)=\frac{\mu_{0}}{8 \pi}+\frac{\mu_{0}}{2 \pi} \ln \frac{b}{a}$

Eg．Consider two coupled circuits having self－inductance $L_{1}$ and $L_{2}$ ，which carry currents $I_{1}$ and $I_{2}$ ，respectively．The mutual inductance between the circuits is $M$ ．
a）Find the ratio $I_{1} / I_{2}$ that makes the stored magnetic energy $W_{m}$ a minimum．
b）Show that $M \leq \sqrt{L_{1} L_{2}}$ ．［清大核工所］
（Sol．）$W_{m}=\frac{1}{2} L_{1} I_{1}^{2}+M I_{1} I_{2}+\frac{1}{2} L_{2} I_{2}^{2}$
（a）$W_{m}=\frac{I_{2}^{2}}{2}\left[L_{1}\left(\frac{I_{1}}{I_{2}}\right)^{2}+2 M\left(\frac{I_{1}}{I_{2}}\right)+L_{2}\right]=\frac{I_{2}^{2}}{2}\left[L_{1} x^{2}+2 M x+L_{2}\right], x \equiv \frac{I_{1}}{I_{2}}$ $\frac{d W_{m}}{d x}=0=\frac{I_{2}^{2}}{2}\left(2 L_{1} x+2 M\right) \Rightarrow x=\frac{I_{1}}{I_{2}}=-\frac{M}{L_{1}}$ for minimum $W_{\mathrm{m}}$
（b）$\left(W_{\mathrm{m}}\right)_{\min }=\frac{I_{2}^{2}}{2}\left(-\frac{M^{2}}{L_{1}}+L_{2}\right) \geq 0 \Rightarrow M \leq \sqrt{L_{1} L_{2}}$

## 4－11 Magnetic Forces and Torques

Force due to constant flux linkage：

$$
\vec{F}_{\phi} \cdot d \vec{\ell}=-d W_{m}=-\left(\nabla W_{m}\right) \cdot \overrightarrow{d \ell} \Rightarrow \vec{F}_{\phi}=-\nabla W_{m} \text { and }\left(T_{\phi}\right)_{z}=-\frac{\partial W_{m}}{\partial \phi}
$$

Force due to constant current：

$$
\begin{aligned}
& d W_{s}=\sum_{k} I_{k} ' d \Phi_{k}=d W+d W_{m} \\
& d W_{m}=\frac{1}{2} \sum_{k} I_{k} \Phi_{k}=\frac{1}{2} d W_{s} \Rightarrow d W=\vec{F}_{I} \cdot d \stackrel{\rightharpoonup}{l}=d W_{m}=\left(\nabla W_{m}\right) \cdot d \stackrel{\rightharpoonup}{l} \Rightarrow \vec{F}_{I}=\nabla W_{m}
\end{aligned}
$$

Torque in terms of mutual inductance：

$$
W_{m}=\frac{1}{2} L_{1} I_{1}^{2}+L_{12} I_{1} I_{2}+\frac{1}{2} L_{2} I_{2}^{2} \Rightarrow F_{I}=I_{1} I_{2}\left(\nabla L_{12}\right), T_{I}=I_{1} I_{2} \frac{\partial L_{12}}{\partial \phi}
$$

Eg．A current $I$ flows in a long solenoid with $n$ closely wound coil－turns per unit length．The cross－sectional area of its iron core，which has permeability $\mu$ ，is $S$ ． Determine the force acting on the core if it is withdrawn to the position．［高考電機技師］
（Sol．）

$W_{m}=\frac{1}{2} \iiint \mu H^{2} d v, W_{m}(x+\Delta x)-W_{m}(x)=\left(\frac{1}{2} \mu_{0} \mu_{r} n^{2} I^{2}-\frac{1}{2} \mu_{0} n^{2} I^{2}\right) S \Delta x=\frac{1}{2} \mu_{0}\left(\mu_{r}-1\right) n^{2} I^{2} S \Delta x$
$\Rightarrow\left(F_{I}\right)_{x}=\frac{\partial W_{m}}{\partial x}=\frac{\mu_{0}}{2}\left(\mu_{r}-1\right) n^{2} I^{2} S$

Magnetic torque：$\vec{T}=\vec{m} \times \vec{B} \quad\left(B=B_{\perp}+B_{\|}, m \| B_{\perp} \Rightarrow m \times B_{\perp}=0\right)$
$d \stackrel{\rightharpoonup}{T}=\hat{x} d F 2 b \sin \phi=\hat{x}\left(I d l B_{\|} \sin \phi\right) 2 b \sin \phi=\hat{x} 2 I b^{2} B_{\|} \sin ^{2} \phi d \phi$
$\vec{T}=\int d \vec{T}=\hat{x} 2 I b^{2} B_{/ /} \int_{0}^{\pi} \sin ^{2} \phi d \phi=\hat{x} I\left(\pi b^{2}\right) B_{/ /}=\hat{x} m B_{/ /}$

$\Rightarrow \vec{T}=\vec{m} \times \vec{B}$

Eg．A rectangular loop in the $\boldsymbol{x} \boldsymbol{y}$－plane with sides $\boldsymbol{b}_{1}$ and $\boldsymbol{b}_{2}$ carrying a current $\boldsymbol{I}$ has in a uniform magnetic field $\vec{B}=\hat{x} B_{x}+\hat{y} B_{y}+\hat{z} B_{z}$ ．Determine the force and torque on the loop．
（Sol．）$\vec{T}=\vec{m} \times \vec{B}=I b_{1} b_{2}\left(\hat{x} B_{y}-\hat{y} B_{x}\right)$


