Chapter 2 Automata, Grammars, and Formal Languages

2-1 Finite-state Automata and Sequential Logic Circuits

Transition diagram (or State diagram): It describes the relation of inputs/outputs
and the transitions between the states.

Eg. According to the left table, draw the
corresponding transition diagram.

(Sol.)

TABLE

all all

ap oy a1 0 1
o] feg o) 1 0 O
bl 5
O O

Finite-state machine, M: It consists of a set / of input symbols, a set O of output

symbols, a finite set S of states, a next-state function f, an output function g, and an

initial state o.

Eg. Draw the transition diagram of the finite-state machine which accepts a
serial 0110 contained in a long string over [0, 1].
(Sol.)

Finite-state automaton, A: It is a finite-state machine in which the set of output
function is {0,1} and the current state determine the last output. Those states foe
which the last output was 1 are called accepting states. Let a=x;x>x3...x, be a string,
If there exist states oy, 01, 02, 03, ..., o, satisfying (a) op=0, (b) f(oi.1,xi)= a; for i=1, ...,

n, (¢) o, e the set of the accepting states, then a is accepted by the finite automaton.

Eg. The transition diagrams of a finite-state machine and its finite-state

automaton.

(| o2)]
\Qf_f/

Eg. Draw the transition diagram of the finite-state automaton which accepts a
string over [a,b] that contain an odd number of a’s.
(Sol.)

Application of finite-state machines and finite-state automata: Designing
sequential logic circuits

Eg. Use J-K Flip-flops and other logic gates to design a digital circuit that accepts
a serial 0110 contained in a long string over [0, 1].

(Sol.)

Encoding the transition diagram:

11

Excitation table of J-K Flip-flop:

QM | Qt+r) J K
0 0 0 d
0 1 1 d
1 0 d 1
1 1 d 0

According to the transition diagram and the excitation table of J-K flip-flop, we have
the following truth table:

A®) | Bty | x |A(t+r) | B+t | y Ja Ka | Jg K
0 0 0 0 1 0 d 1 d
0 0 1 0 0 0 d 0 d
0 1 0 0 1 0 d d 0
0 1 1 1 0 0 1 d d 1
1 0 0 0 1 0 d 1 1 d
1 0 1 1 1 0 d 0 1 d
1 1 0 0 1 1 d 1 d 0
1 1 1 0 0 0 d 1 d 1

Let A=0a, B=Qg for the two J-K flip-flops, and then we can obtain the relation of Ja,
Ka, Oa, Js, Kg, Op and A4, B, x, and y by the Karnaugh map:

AF | 4B | AB| 4B AB | AB | AB| 4B
: 4 |@] D o] [A]a)
x d | d x |fa 11\ 4

Ja= Bx Ka=x+B

AB | AR | 48| 4B

L7 T
Pila | @

KB=X

=

<\
g
o)~

AB

%I

=

The sequential logic circuit is as shown as in the following diagram:

clock

% :I—./'L
bl

L B By

A

Ja Qg

)
_J‘:

JB QB

Kp Qg

Nondeterministic finite-state automaton: It is a finite-state automaton consisting of

a set [of input symbols, a finite S of states, a subset 4 of S of accepting states, a
next-state function £, and an initial state o.

Eg. The left finite-state automaton

b & is a nondeterministic finite-state

/_) :.r /) 2 . : N : automaton. Vertex C has no

" == F || outgoing edge labeled a, and it has

22" 2 outgoing edges labeled b. In state

C, if b is input, we have 2 choices of

next states. It can remain in state C or go to state F. On the other hand, vertex F

has no outgoing edges at all. In state F, null string is input and is accepted by the
nondeterministic finite-state automaton.

This nondeterministic finite-state automaton is equivalent to a finite-state

automaton as shown in the follow figure.

& s . 7

b X
—(1ot —C1cy »=((le.ry) —C 8 T Db

o

" Eg. Vertex D of the left
0 nondeterministic finite-state

o a ['I.[' (.:: ‘-]*_”_|:"::' ",r)." |O ¢ automaton has 2 outgoing
__/// et edges labeled a. In state F, if
a is input, we have 2 choices
of next states. It can remain

in state D or go to state C.
This nondeterministic finite-state automaton is equivalent to a finite-state

automaton as shown in the follow figure.

- =
/ ¥ g WL
— !-n]-‘ - ._ [-D-l .- S u—'1 (o:C)))
_j{-a-.I-)k)T ;t*.m) -’i lo:C D1)

2-2 Formal Languages and Grammars

Formal language: Let A4 be a finite set. A formal language L over 4 is a subset of 4*,
the set of all strings over 4.

Eg. Let A={a,b,c}, then chabb, aab, abcab, bcha, ch, ..., are all formal languages.
Eg. Let A={jJ%, * }, then “/jy[& " ” and “ " [£ /[y are both formal languages.
Eg. Let A={women, like, men}, then “women like men” and “men like women”

are both formal languages.

Grammar G: It consists of a finite set N of non-terminal symbols, a finite set 7" of
terminal symbols (Note: NNT=¢), a starting symbol o, and a finite set P of
productions [(NU 7)*- T*]x(NUT)*.

Eg. The grammar G=(N, T, P, o) is defined by N={c,S}, T={a,b}, P={c—Dg,
¢—aS, S—DbS, S—Db}. Show that bbbahb is in agreement with the grammar G, but
aab is not in agreement with the grammar G.

(Proof) ¢ = ho = hbc = bbbc = bbbaS = bbbabS = bbbabb, .". bbbabb is in
agreement with the grammar G.

c=>aS=abS or ab, .. aab is not in agreement with the grammar G.

Eg. The grammar G=(N, T, P, o) is defined by N={c,A,B}, T={§’ﬁJ,Fi\, M1, P={c—
;‘F[J A, 6— * A A-IE B, B—JF]J, B— * 1. Show that “;‘F#Fi* *” js in agreement with
the grammar, but “’ﬁJ * £ is not in agreement with the grammar.

(Proof) 6=y A=yt B=jpt

“;‘F[JPZE\ 7 is in agreement with the grammar G.

o=’ A=k B, . " P£” is not in agreement with the grammar G.

Eg. The grammar G=(N, T, P, ¢) is defined by N={c,women,like,men,A,B}, T={.},
P={c—women A, c—men A, A—like B, B—>women., B—men.}. Show that
“women like men.” is in agreement with the grammar, but “women men like.“ is
not in agreement with the grammar.
(Proof) 6= women 4 = women like B= women like men.

“women like men.” is in agreement with the grammar G.
o =>women 4 = women like B, .".“women men like.” is not in agreement with the

grammar G.

Context-sensitive grammar: Its production is of the form adf—adf, where a,
Be(NUT)*, AeN, 5 (NUT)*-{A}.

Eg. The grammar G=(N, T, P, o) is defined by N={¢,A,B,C,D,E}, T={a,b,c},
P={6—aAB, c—aB, A—aAC, A—aC, B—D¢, D—b, CD—CE, CE—DE, DE—DC,
Cc—Dcc}. *. CD—-CE—DE—DC,

.". 60=>aAB = aaACB = aaaACCB = aaaaACCCDc = aaaaaACCCCDc= ...
—=a"'AC"?Dc=a""'aC™'Dc=a"DC™'c=a"DC™*Cc=a"DC™*Dcc

= a"D*C"*cc=a"D*C™*Ccc=a"D*C™*Decc = a"D*C™3ccc = a"D*C™*Cecc

= .. = a'l"'Ccc™?* = a'D"'Dccc™? = a'D%" = a""c", and
L(G)={a"b"c"|n=1,2, ...} is a context-sensitive language.

Context-free grammar: Its production is of the form 4—d, where Ae N, oe (NU T)*.
Eg. The grammar G=(N, T, P, o) is defined by N={c}, T={a,b}, P={c—ach,
c—ab}. 6= ach = aacbb = aaacbbb = ... = d"'ob"' = " 'abb™ = 4"b", and
L(G)={a"b"| n=1,2, ...} is a context-free language.

Regular grammar: Its production is of the form 4—a or A—aB or A—A\, where A,
BeN,aeT.

Eg. The grammar G=(N, T, P, o) is defined by N={c,S}, T={a,b}, P={c—Dg,
¢—aSs, S—hbS, S—h}. 6=>be=bbe=bbbe=...=b"¢=b"aS= b"abS = b"abbS
= b"abbbS=...=b"ab™, L(G)={b"ab™|n, m=1,2, ...} is a regular language.

Backus-Naur form (BNF): Rewrite the forms such as S—7 into S::= T, and S—7,
S—U, S—V, S—Winto S::= TIU|V|W.
Eg. Determine whether or not -901 is an integer by the following (BNF) grammar
generates all decimal integers.
<starting symbol>::=<integer>
<digit>::=0|1|2|3|4/5/6|7|8|9
<integer>::=<signed integer>|<unsigned integer>
<signed integer>::=+<unsigned integer>|-<unsigned integer>
<unsigned integer>::=<digit>|<digit><unsigned integer>
(Sol.)
<integer>::=<signed integer>::=-<unsigned integer>
=-<digit><unsigned integer>::=-9<unsigned integer>
:=-9<digit><unsigned integer>::=-90<unsigned integer>::=-90<digit>::=-901

.. =901 1s an integer.

Application of Grammars: Generating fractal curves to model the growth of
plants
Fractal curves: A part of the whole curve resembles the whole.
Eg. Let d be a command to draw a straight line of a fixed length in the current
direction, and + be a command to turn right by 60°, and - be a command to turn
left by 60°. The context-free grammar G=(N, T, P, D) is defined by N={D},
T={d,+,-}, P={D—D-D++D-D, D—d, +—+, -—-}. Generate the curve by the
grammar.
(Sol.) D= D-D++D-D = d-d++d-d e L(G).
1°:
‘—/\‘ The string d-d++d-d is interpreted as the first-order von Koch
snowflake as shown as in the left figure.

2°:
D= D-D++D-D=> D-D++D-D-D-D ++D-D++D-D++D-D-D-D++D-D
= d-d++d-d-d-d++d-d++d-d++d-d-d-d++d-d

The string d-d++d-d-d-d++d-d++d-d++d-d-d-d++d-d is
m interpreted as the second-order von Koch snowflake as

shown as in the left figure.

The other higher- (3“1-, 4™ and Sth-) order of von Koch snowflakes are as shown as in

the following figures.

A o B A S

Eg. Some examples of the Hilbert curves can be generated by a special grammar.

Relation of finite automata and grammars

Eg. Draw the corresponding finite automaton or the nondeterministic finite
automaton of the grammar G=(N, T, P, o) is defined by N={¢,C}, T={a,b},
P={6c—be, 6—aC, C—bC, C—b}.

(Sol.)
b /) b
0 ; ; R
' il L ¥ e
|] — :

[C p——] | F

It can accept the strings over [a,b] containing precisely one a and ending with b, like
bab™, n>0,m>1.

Construct a grammar
Eg. Give a grammar that specifies the language {(ab)*c¥| k, j>1}. [~ &7
(Sol.) According to the above description, we draw a nondeterministic finite-state

automaton as shown in the following figure.

And then we have G=(N, T, P, o) that is defined by N={c,a,b}, T={c}, P={c—aA,
A—bB, B—aA| c¢C, C—cD, D—cC| o}.

Eg. Describe the language ({A,B,S}, {a,b,c}, S, {S—Sa| AB, A—aA| a, B—b]|
cS)) [%Y B

