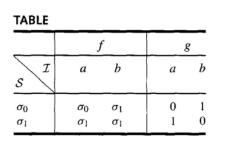
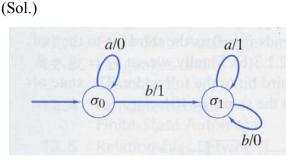
Chapter 2 Automata, Grammars, and Formal Languages

2-1 Finite-state Automata and Sequential Logic Circuits

Transition diagram (or State diagram): It describes the relation of inputs/outputs and the transitions between the states.

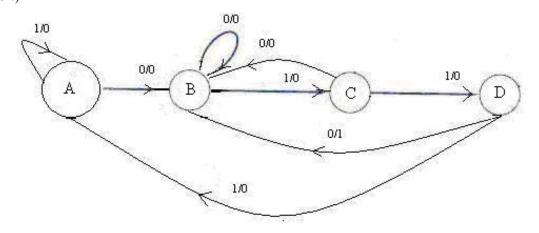


Eg. According to the left table, draw the corresponding transition diagram.



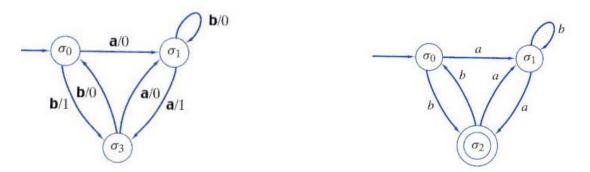
Finite-state machine, *M***:** It consists of a set *I* of input symbols, a set *O* of output symbols, a finite set *S* of states, a next-state function *f*, an output function *g*, and an initial state σ .

Eg. Draw the transition diagram of the finite-state machine which accepts a serial 0110 contained in a long string over [0, 1]. (Sol.)

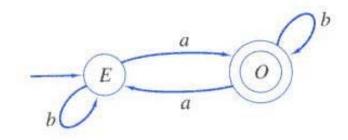


Finite-state automaton, *A***:** It is a finite-state machine in which the set of output function is $\{0,1\}$ and the current state determine the last output. Those states foe which the last output was 1 are called **accepting states**. Let $\alpha = x_1 x_2 x_3 \dots x_n$ be a string, If there exist states σ_0 , σ_1 , σ_2 , σ_3 , ..., σ_n satisfying (a) $\sigma_0 = \sigma$, (b) $f(\sigma_{i-1}, x_i) = \sigma_i$ for $i=1, \dots, n$, (c) $\sigma_n \in$ the set of the accepting states, then α is accepted by the finite automaton.

Eg. The transition diagrams of a finite-state machine and its finite-state automaton.



Eg. Draw the transition diagram of the finite-state automaton which accepts a string over [a,b] that contain an odd number of a's. (Sol.)

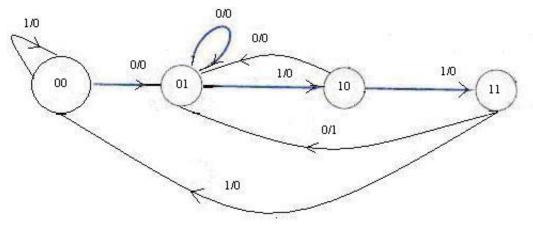


Application of finite-state machines and finite-state automata: Designing sequential logic circuits

Eg. Use *J-K* Flip-flops and other logic gates to design a digital circuit that accepts a serial 0110 contained in a long string over [0, 1].

(Sol.)

Encoding the transition diagram:



Excitation table of *J*-*K* Flip-flop:

Q(t)	$Q(t+\tau)$	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

According to the transition diagram and the excitation table of J-K flip-flop, we have the following truth table:

A(t)	B(t)	x	$A(t+\tau)$	$B(t+\tau)$	у	$J_{ m A}$	KA	J_{B}	K _B
0	0	0	0	1	0	0	d	1	d
0	0	1	0	0	0	0	d	0	d
0	1	0	0	1	0	0	d	d	0
0	1	1	1	0	0	1	d	d	1
1	0	0	0	1	0	d	1	1	d
1	0	1	1	1	0	d	0	1	d
1	1	0	0	1	1	d	1	d	0
1	1	1	0	0	0	d	1	d	1

Let $A=Q_A$, $B=Q_B$ for the two *J*-*K* flip-flops, and then we can obtain the relation of J_A , K_A , Q_A , J_B , K_B , Q_B and A, B, x, and y by the Karnaugh map:

	$\overline{A}\overline{B}$	$A\overline{B}$	AB	ĀB
x		d	d	1
$\frac{-}{x}$		d	d	

$J_{\rm A} = Bx$	
------------------	--

	$\overline{A}\overline{B}$	$A\overline{B}$	AB	ĀB
x	d		1	d
-	[d	1	4	d

	$\overline{A}\overline{B}$	AB	AB	ĀB
x		/1	d	d
\overline{x}	Q	V	d	d)

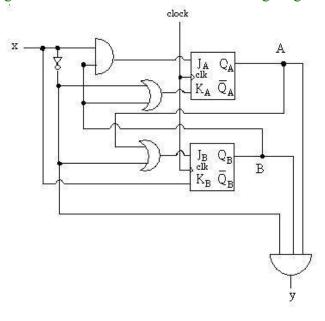
	\overline{AB}	$A\overline{B}$	AB	ĀB
x	d	d	1	1)
\overline{x}^{-}	d	d		

 $K_{\rm B} = x$

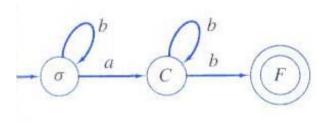
	$\overline{A}\overline{B}$	$A\overline{B}$	AB	ĀB
x				
\overline{x}			1	

 $y = AB\overline{x}$

The sequential logic circuit is as shown as in the following diagram:



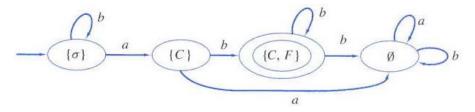
Nondeterministic finite-state automaton: It is a finite-state automaton consisting of a set *I* of input symbols, a finite *S* of states, a subset *A* of *S* of accepting states, a next-state function *f*, and an initial state σ .

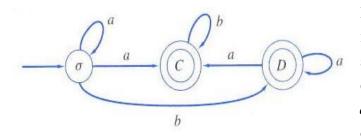


Eg. The left finite-state automaton is a nondeterministic finite-state automaton. Vertex C has no outgoing edge labeled a, and it has 2 outgoing edges labeled b. In state C, if b is input, we have 2 choices of

next states. It can remain in state C or go to state F. On the other hand, vertex F has no outgoing edges at all. In state F, null string is input and is accepted by the nondeterministic finite-state automaton.

This nondeterministic finite-state automaton is equivalent to a finite-state automaton as shown in the follow figure.





Eg. Vertex D of the left nondeterministic finite-state automaton has 2 outgoing edges labeled a. In state F, if a is input, we have 2 choices of next states. It can remain

in state D or go to state C.

This nondeterministic finite-state automaton is equivalent to a finite-state automaton as shown in the follow figure.



2-2 Formal Languages and Grammars

Formal language: Let A be a finite set. A formal language L over A is a subset of A^* , the set of all strings over A.

Eg. Let A={a,b,c}, then *cbabb*, *aab*, *abcab*, *bcba*, *cb*, ..., are all formal languages. Eg. Let A={狗,咬,人}, then "狗咬人" and "人咬狗" are both formal languages.

Eg. Let *A*={women, like, men}, then "women like men" and "men like women" are both formal languages.

Grammar G: It consists of a finite set N of non-terminal symbols, a finite set T of terminal symbols (Note: $N \cap T = \phi$), a starting symbol σ , and a finite set P of productions $[(N \cup T)^* - T^*] \times (N \cup T)^*$.

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma,S\}$, $T=\{a,b\}$, $P=\{\sigma \rightarrow b\sigma, \sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b\}$. Show that *bbbabb* is in agreement with the grammar G, but *aab* is not in agreement with the grammar G.

(Proof) $\sigma \Rightarrow b\sigma \Rightarrow bb\sigma \Rightarrow bbb\sigma \Rightarrow bbbaS \Rightarrow bbbabS \Rightarrow bbbabb, \therefore bbbabb$ is in agreement with the grammar *G*.

 $\sigma \Rightarrow aS \Rightarrow abS$ or ab, \therefore *aab* is **not in agreement with** the grammar G.

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma,A,B\}$, $T=\{\mathfrak{H}, \mathfrak{W}, \mathcal{L}\}$, $P=\{\sigma \rightarrow \mathfrak{H}, A, \sigma \rightarrow \mathcal{L}, A, A \rightarrow \mathfrak{W}, B, B \rightarrow \mathfrak{H}, B \rightarrow \mathcal{L}\}$. Show that "狗咬人" is in agreement with the grammar, but "狗人咬" is not in agreement with the grammar.

 $(Proof) \sigma \Rightarrow 狗 A \Rightarrow 狗 咬 B \Rightarrow 狗 咬 人$

:: "狗咬人" is in agreement with the grammar G.

 $\sigma \Rightarrow$ 狗 $A \Rightarrow$ 狗 咬 B, ... " 狗 人 咬" is **not in agreement with** the grammar G.

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma, women, like, men, A, B\}, T=\{.\}, P=\{\sigma \rightarrow women A, \sigma \rightarrow men A, A \rightarrow like B, B \rightarrow women., B \rightarrow men.\}$. Show that "women like men." is in agreement with the grammar, but "women men like." is not in agreement with the grammar.

(Proof) $\sigma \Rightarrow$ women $A \Rightarrow$ women like $B \Rightarrow$ women like men.

 \therefore "women like men." is in agreement with the grammar G.

 $\sigma \Rightarrow$ women $A \Rightarrow$ women like B, \therefore "women men like." is not in agreement with the grammar G.

Context-sensitive grammar: Its production is of the form $\alpha A\beta \rightarrow \alpha \delta\beta$, where α , $\beta \in (N \cup T)^*, A \in N, \delta \in (N \cup T)^* - \{\lambda\}.$

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma,A,B,C,D,E\}, T=\{a,b,c\},$ $P=\{\sigma \rightarrow aAB, \sigma \rightarrow aB, A \rightarrow aAC, A \rightarrow aC, B \rightarrow Dc, D \rightarrow b, CD \rightarrow CE, CE \rightarrow DE, DE \rightarrow DC, A \rightarrow aC, B \rightarrow Dc, D \rightarrow b, CD \rightarrow CE, CE \rightarrow DE, DE \rightarrow DC, A \rightarrow aC, B \rightarrow Dc, D \rightarrow CE, CE \rightarrow DE, DE \rightarrow DC, A \rightarrow aC, A \rightarrow aC, B \rightarrow Dc, D \rightarrow CE, CE \rightarrow DE, DE \rightarrow DC, A \rightarrow AC, A \rightarrow AC,$ $Cc \rightarrow Dcc$ }. $CD \rightarrow CE \rightarrow DE \rightarrow DC$, $\therefore \sigma \Rightarrow aAB \Rightarrow aaACB \Rightarrow aaaACCB \Rightarrow aaaaACCCDc \Rightarrow aaaaaACCCCDc \Rightarrow ...$ $\Rightarrow a^{n-1}AC^{n-2}Dc \Rightarrow a^{n-1}aC^{n-1}Dc \Rightarrow a^{n}DC^{n-1}c \Rightarrow a^{n}DC^{n-2}Cc \Rightarrow a^{n}DC^{n-2}Dcc$ $\Rightarrow a^{n}D^{2}C^{n-2}cc \Rightarrow a^{n}D^{2}C^{n-3}Ccc \Rightarrow a^{n}D^{2}C^{n-3}Dccc \Rightarrow a^{n}D^{3}C^{n-3}ccc \Rightarrow a^{n}D^{3}C^{n-4}Cccc$

 $\Rightarrow \dots \Rightarrow a^{n}D^{n-1}Ccc^{n-2} \Rightarrow a^{n}D^{n-1}Dccc^{n-2} \Rightarrow a^{n}D^{n}c^{n} \Rightarrow a^{n}b^{n}c^{n},$

and $L(G) = \{a^n b^n c^n | n=1,2,...\}$ is a context-sensitive language.

Context-free grammar: Its production is of the form $A \rightarrow \delta$, where $A \in N$, $\delta \in (N \cup T)^*$. Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma\}, T=\{a,b\}, P=\{\sigma \rightarrow a\sigma b, \sigma\}$ $\sigma \rightarrow ab$ }. $\sigma \Rightarrow a\sigma b \Rightarrow aa\sigma bb \Rightarrow aaa\sigma bbb \Rightarrow ... \Rightarrow a^{n-1}\sigma b^{n-1} \Rightarrow a^{n-1}abb^{n-1} \Rightarrow a^n b^n$, and $L(G) = \{a^n b^n \mid n=1,2,...\}$ is a context-free language.

Regular grammar: Its production is of the form $A \rightarrow a$ or $A \rightarrow aB$ or $A \rightarrow \lambda$, where A, $B \in N, a \in T$.

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma,S\}, T=\{a,b\}, P=\{\sigma \rightarrow b\sigma\}$ $\sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b\}, \sigma \Rightarrow b\sigma \Rightarrow bb\sigma \Rightarrow bbb\sigma \Rightarrow ... \Rightarrow b^{n}\sigma \Rightarrow b^{n}aS \Rightarrow b^{n}abS \Rightarrow b^{n}abbS$ $\Rightarrow b^{n}abbbS \Rightarrow ... \Rightarrow b^{n}ab^{m}, L(G) = \{b^{n}ab^{m}|n, m=1,2, ...\}$ is a regular language.

Backus-Naur form (BNF): Rewrite the forms such as $S \rightarrow T$ into S := T, and $S \rightarrow T$, $S \rightarrow U, S \rightarrow V, S \rightarrow W$ into S := T|U|V|W.

Eg. Determine whether or not -901 is an integer by the following (BNF) grammar generates all decimal integers.

<starting symbol>::=<integer>

```
<digit>::=0|1|2|3|4|5|6|7|8|9
```

<integer>::=<signed integer>|<unsigned integer>

```
<signed integer>::=+<unsigned integer>|-<unsigned integer>
```

```
<unsigned integer>::=<digit>|<digit><unsigned integer>
```

(Sol.)

<integer>::=<signed integer>::=-<unsigned integer>

::=-<digit><unsigned integer>::=-9<unsigned integer>

::=-9<digit><unsigned integer>::=-90<unsigned integer>::=-90<digit>::=-901

 \therefore -901 is an integer.

Application of Grammars: Generating fractal curves to model the growth of plants

Fractal curves: A part of the whole curve resembles the whole.

Eg. Let *d* be a command to draw a straight line of a fixed length in the current direction, and + be a command to turn right by 60°, and - be a command to turn left by 60°. The context-free grammar G=(N, T, P, D) is defined by $N=\{D\}$, $T=\{d,+,-\}, P=\{D\rightarrow D-D++D-D, D\rightarrow d, +\rightarrow+, -\rightarrow-\}$. Generate the curve by the grammar.

(Sol.) $D \Rightarrow D-D++D-D \Rightarrow d-d++d-d \in L(G)$. 1°:

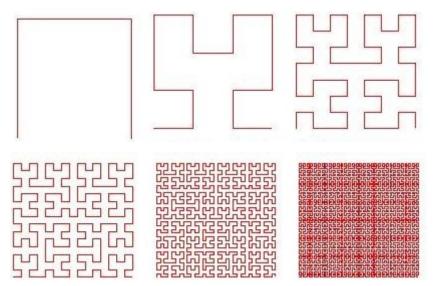
The string d-d++d-d is interpreted as the first-order von Koch snowflake as shown as in the left figure.

2°:

The string d-d++d-d-d-d++d-d++d-d-d-d++d-d is interpreted as the second-order von Koch snowflake as shown as in the left figure.

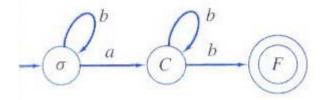
The other higher- (3rd-, 4th-, and 5th-) order of von Koch snowflakes are as shown as in the following figures.

Eg. Some examples of the Hilbert curves can be generated by a special grammar.



Relation of finite automata and grammars

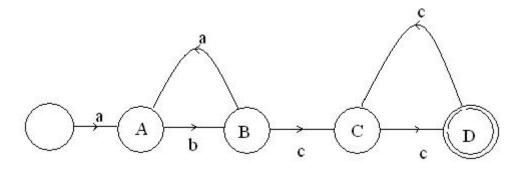
Eg. Draw the corresponding finite automaton or the nondeterministic finite automaton of the grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma,C\}, T=\{a,b\}, P=\{\sigma \rightarrow b\sigma, \sigma \rightarrow aC, C \rightarrow bC, C \rightarrow b\}$. (Sol.)



It can accept the strings over [a,b] containing precisely one *a* and ending with *b*, like $b^n a b^m$, $n \ge 0$, $m \ge 1$.

Construct a grammar

Eg. Give a grammar that specifies the language $\{(ab)^k c^{2j} | k, j \ge 1\}$. [交大資工所] (Sol.) According to the above description, we draw a nondeterministic finite-state automaton as shown in the following figure.



And then we have $G=(N, T, P, \sigma)$ that is defined by $N=\{\sigma,a,b\}, T=\{c\}, P=\{\sigma \rightarrow aA, A \rightarrow bB, B \rightarrow aA \mid cC, C \rightarrow cD, D \rightarrow cC \mid \varphi\}.$

Eg. Describe the language ({*A*,*B*,*S*}, {*a*,*b*,*c*}, *S*, {*S*→*Sa* | *AB*, *A*→*aA* | *a*, *B*→*b* | *cS*)) [交大資工所]