
Chapter 2 Automata, Grammars, and Formal Languages 
2-1 Finite-state Automata and Sequential Logic Circuits 
Transition diagram (or State diagram): It describes the relation of inputs/outputs 
and the transitions between the states. 

Eg. According to the left table, draw the 
corresponding transition diagram. 
(Sol.) 

  
 
Finite-state machine, M: It consists of a set I of input symbols, a set O of output 
symbols, a finite set S of states, a next-state function f, an output function g, and an 
initial state σ. 
 
Eg. Draw the transition diagram of the finite-state machine which accepts a 
serial 0110 contained in a long string over [0, 1]. 
(Sol.) 

  
Finite-state automaton, A: It is a finite-state machine in which the set of output 
function is {0,1} and the current state determine the last output. Those states foe 
which the last output was 1 are called accepting states. Let α=x1x2x3…xn be a string, 
If there exist states σ0, σ1, σ2, σ3, …, σn satisfying (a) σ0=σ, (b) f(σi-1,xi)= σi for i=1, …, 
n, (c) σn∈the set of the accepting states, then α is accepted by the finite automaton. 



Eg. The transition diagrams of a finite-state machine and its finite-state 
automaton. 

 

 
Eg. Draw the transition diagram of the finite-state automaton which accepts a 
string over [a,b] that contain an odd number of a’s. 
(Sol.) 

 



Application of finite-state machines and finite-state automata: Designing 
sequential logic circuits 
Eg. Use J-K Flip-flops and other logic gates to design a digital circuit that accepts 
a serial 0110 contained in a long string over [0, 1]. 
(Sol.)  
Encoding the transition diagram: 

 
 
Excitation table of J-K Flip-flop: 

Q(t) Q(t+τ) J K 
0 0 0 d 
0 1 1 d 
1 0 d 1 
1 1 d 0 

 
According to the transition diagram and the excitation table of J-K flip-flop, we have 
the following truth table: 
A(t) B(t) x A(t+τ) B(t+τ) y JA KA JB KB 

0 0 0 0 1 0 0 d 1 d 
0 0 1 0 0 0 0 d 0 d 
0 1 0 0 1 0 0 d d 0 
0 1 1 1 0 0 1 d d 1 
1 0 0 0 1 0 d 1 1 d 
1 0 1 1 1 0 d 0 1 d 
1 1 0 0 1 1 d 1 d 0 
1 1 1 0 0 0 d 1 d 1 

 
Let A=QA, B=QB for the two J-K flip-flops, and then we can obtain the relation of JA, 
KA, QA, JB, KB, QB and A, B, x, and y by the Karnaugh map: 



   
JA= Bx                 KA= x +B                   JB= x +A 

 

 
 KB= x                                              y=AB x  
 

The sequential logic circuit is as shown as in the following diagram: 

 



Nondeterministic finite-state automaton: It is a finite-state automaton consisting of 
a set I of input symbols, a finite S of states, a subset A of S of accepting states, a 
next-state function f, and an initial state σ. 

Eg. The left finite-state automaton 
is a nondeterministic finite-state 
automaton. Vertex C has no 
outgoing edge labeled a, and it has 
2 outgoing edges labeled b. In state 
C, if b is input, we have 2 choices of 

next states. It can remain in state C or go to state F. On the other hand, vertex F 
has no outgoing edges at all. In state F, null string is input and is accepted by the 
nondeterministic finite-state automaton. 
 This nondeterministic finite-state automaton is equivalent to a finite-state 
automaton as shown in the follow figure. 

 
 

Eg. Vertex D of the left 
nondeterministic finite-state 
automaton has 2 outgoing 
edges labeled a. In state F, if 
a is input, we have 2 choices 
of next states. It can remain 

in state D or go to state C. 
This nondeterministic finite-state automaton is equivalent to a finite-state 

automaton as shown in the follow figure. 

 



2-2 Formal Languages and Grammars 
Formal language: Let A be a finite set. A formal language L over A is a subset of A*, 
the set of all strings over A. 
Eg. Let A={a,b,c}, then cbabb, aab, abcab, bcba, cb, …, are all formal languages. 
Eg. Let A={狗,咬,人}, then “狗咬人” and “人咬狗” are both formal languages. 
Eg. Let A={women, like, men}, then “women like men” and “men like women” 
are both formal languages. 
 
Grammar G: It consists of a finite set N of non-terminal symbols, a finite set T of 
terminal symbols (Note: N∩T= φ ), a starting symbol σ, and a finite set P of 
productions [(N∪T)*- T*]×(N∪T)*. 
Eg. The grammar G=(N, T, P, σ) is defined by N={σ,S}, T={a,b}, P={σ→bσ, 
σ→aS, S→bS, S→b}. Show that bbbabb is in agreement with the grammar G, but 
aab is not in agreement with the grammar G. 
(Proof) σ bσ bbσ bbbσ bbbaS bbbabS bbbabb, ∴ bbbabb is in 
agreement with the grammar G. 

⇒ ⇒ ⇒ ⇒ ⇒ ⇒

σ⇒aS⇒abS or ab, ∴ aab is not in agreement with the grammar G. 
 
Eg. The grammar G=(N, T, P, σ) is defined by N={σ,A,B}, T={狗,咬,人}, P={σ→
狗 A, σ→人 A, A→咬 B, B→狗, B→人}. Show that “狗咬人” is in agreement with 
the grammar, but “狗人咬“ is not in agreement with the grammar. 
(Proof) σ⇒狗 A⇒狗咬 B 狗咬人 ⇒
∴ “狗咬人” is in agreement with the grammar G. 
σ⇒狗 A 狗咬 B, ∴ “狗人咬” is not in agreement with the grammar G. ⇒

 
Eg. The grammar G=(N, T, P, σ) is defined by N={σ,women,like,men,A,B}, T={.}, 
P={σ→women A, σ→men A, A→like B, B→women., B→men.}. Show that 
“women like men.” is in agreement with the grammar, but “women men like.“ is 
not in agreement with the grammar. 
(Proof) σ⇒women A women like B⇒women like men. ⇒
∴ “women like men.” is in agreement with the grammar G. 
σ⇒women A⇒women like B, ∴“women men like.” is not in agreement with the 
grammar G. 
 



Context-sensitive grammar: Its production is of the form αAβ→αδβ, where α, 
β∈(N∪T)*, A∈N, δ∈(N∪T)*-{λ}. 
Eg. The grammar G=(N, T, P, σ) is defined by N={σ,A,B,C,D,E}, T={a,b,c}, 
P={σ→aAB, σ→aB, A→aAC, A→aC, B→Dc, D→b, CD→CE, CE→DE, DE→DC, 
Cc→Dcc}.  ∵ CD→CE→DE→DC, 
∴ σ⇒aAB aaACB aaaACCB aaaaACCCDc aaaaaACCCCDc … ⇒ ⇒ ⇒ ⇒ ⇒

⇒an-1ACn-2Dc⇒an-1aC n-1Dc⇒anDCn-1c anDCn-2Cc⇒anDCn-2Dcc ⇒
⇒anD2Cn-2cc anD2Cn-3Ccc anD2Cn-3Dccc anD3Cn-3ccc anD3Cn-4Cccc ⇒ ⇒ ⇒ ⇒
⇒ … anDn-1Cccn-2 anDn-1Dcccn-2 anDncn anbncn, and 
L(G)={anbncn|n=1,2, …} is a context-sensitive language. 

⇒ ⇒ ⇒ ⇒

 
Context-free grammar: Its production is of the form A→δ, where A∈N, δ∈(N∪T)*. 
Eg. The grammar G=(N, T, P, σ) is defined by N={σ}, T={a,b}, P={σ→aσb, 
σ→ab}. σ aσb aaσbb aaaσbbb … an-1σbn-1 an-1abbn-1 anbn, and 
L(G)={anbn︳n=1,2, …} is a context-free language. 

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

 
Regular grammar: Its production is of the form A→a or A→aB or A→λ, where A, 
B∈N, a∈T. 
Eg. The grammar G=(N, T, P, σ) is defined by N={σ,S}, T={a,b}, P={σ→bσ, 
σ→aS, S→bS, S→b}. σ⇒bσ bbσ⇒bbbσ⇒…⇒bnσ bnaS⇒bnabS⇒bnabbS ⇒ ⇒
⇒bnabbbS⇒…⇒bnabm, L(G)={bnabm|n, m=1,2, …} is a regular language. 
 
Backus-Naur form (BNF): Rewrite the forms such as S→T into S::= T, and S→T, 
S→U, S→V, S→W into S::= T|U|V|W. 
Eg. Determine whether or not -901 is an integer by the following (BNF) grammar 
generates all decimal integers. 

<starting symbol>::=<integer> 
<digit>::=0|1|2|3|4|5|6|7|8|9 
<integer>::=<signed integer>|<unsigned integer> 
<signed integer>::=+<unsigned integer>|-<unsigned integer> 
<unsigned integer>::=<digit>|<digit><unsigned integer> 

(Sol.) 
<integer>::=<signed integer>::=-<unsigned integer> 
::=-<digit><unsigned integer>::=-9<unsigned integer> 
::=-9<digit><unsigned integer>::=-90<unsigned integer>::=-90<digit>::=-901 

∴ -901 is an integer. 



Application of Grammars: Generating fractal curves to model the growth of 
plants 
Fractal curves: A part of the whole curve resembles the whole. 
Eg. Let d be a command to draw a straight line of a fixed length in the current 
direction, and + be a command to turn right by 60°, and - be a command to turn 
left by 60°. The context-free grammar G=(N, T, P, D) is defined by N={D}, 
T={d,+,-}, P={D→D-D++D-D, D→d, +→+, -→-}. Generate the curve by the 
grammar. 
(Sol.) D D-D++D-D d-d++d-d⇒ ⇒ ∈L(G). 
1°: 

The string d-d++d-d is interpreted as the first-order von Koch 
snowflake as shown as in the left figure. 

2°: 
D D-D++D-D D-D++D-D-D-D ++D-D++D-D++D-D-D-D++D-D ⇒ ⇒
⇒d-d++d-d-d-d++d-d++d-d++d-d-d-d++d-d 

The string d-d++d-d-d-d++d-d++d-d++d-d-d-d++d-d is 
interpreted as the second-order von Koch snowflake as 
shown as in the left figure. 

 
The other higher- (3rd-, 4th-, and 5th-) order of von Koch snowflakes are as shown as in 
the following figures. 

 
 
Eg. Some examples of the Hilbert curves can be generated by a special grammar. 

 



Relation of finite automata and grammars 
Eg. Draw the corresponding finite automaton or the nondeterministic finite 
automaton of the grammar G=(N, T, P, σ) is defined by N={σ,C}, T={a,b}, 
P={σ→bσ, σ→aC, C→bC, C→b}. 
(Sol.) 

 
It can accept the strings over [a,b] containing precisely one a and ending with b, like 
bnabm, n≥0, m 1. ≥
 
Construct a grammar 
Eg. Give a grammar that specifies the language {(ab)kc2j︳k, j≥1}. [交大資工所] 
(Sol.) According to the above description, we draw a nondeterministic finite-state 
automaton as shown in the following figure. 

 
And then we have G=(N, T, P, σ) that is defined by N={σ,a,b}, T={c}, P={σ→aA, 
A→bB, B→aA︳cC, C→cD, D→cC︳φ}. 
 
Eg. Describe the language ({A,B,S}, {a,b,c}, S, {S→Sa︳AB, A→aA︳a, B→b︳

cS)) [交大資工所] 


