Chapter 2 Automata, Grammars, and Formal Languages

2-1 Finite-state Automata and Sequential Logic Circuits

Transition diagram (or State diagram): It describes the relation of inputs/outputs and the transitions between the states.

TABLE

	f		g	
\mathcal{S}	a	b	a	b
σ_{0}	σ_{0}	σ_{1}	0	1
σ_{1}	σ_{1}	σ_{1}	1	0

Eg. According to the left table, draw the corresponding transition diagram.
(Sol.)

Finite-state machine, \boldsymbol{M} : It consists of a set I of input symbols, a set O of output symbols, a finite set S of states, a next-state function f, an output function g, and an initial state σ.

Eg. Draw the transition diagram of the finite-state machine which accepts a serial 0110 contained in a long string over [0,1].
(Sol.)

Finite-state automaton, A : It is a finite-state machine in which the set of output function is $\{0,1\}$ and the current state determine the last output. Those states foe which the last output was 1 are called accepting states. Let $\alpha=x_{1} x_{2} x_{3} \ldots x_{\mathrm{n}}$ be a string, If there exist states $\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{\mathrm{n}}$ satisfying (a) $\sigma_{0}=\sigma$, (b) $f\left(\sigma_{\mathrm{i}-1}, x_{\mathrm{i}}\right)=\sigma_{\mathrm{i}}$ for $\mathrm{i}=1, \ldots$, n, (c) $\sigma_{\mathrm{n}} \in$ the set of the accepting states, then α is accepted by the finite automaton.

Eg. The transition diagrams of a finite-state machine and its finite-state automaton.

Eg. Draw the transition diagram of the finite-state automaton which accepts a string over $[a, b]$ that contain an odd number of a 's.
(Sol.)

Application of finite-state machines and finite-state automata: Designing sequential logic circuits

Eg. Use J-K Flip-flops and other logic gates to design a digital circuit that accepts

 a serial 0110 contained in a long string over [0,1$]$.(Sol.)
Encoding the transition diagram:

Excitation table of $J-K$ Flip-flop:

$\boldsymbol{Q}(\boldsymbol{t})$	$\mathbf{Q}(\boldsymbol{t}+\boldsymbol{\tau})$	\boldsymbol{J}	\boldsymbol{K}
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

According to the transition diagram and the excitation table of $J-K$ flip-flop, we have the following truth table:

$\boldsymbol{A}(\boldsymbol{t})$	$\boldsymbol{B}(\boldsymbol{t})$	\boldsymbol{x}	$\boldsymbol{A}(\boldsymbol{t}+\boldsymbol{\tau})$	$\boldsymbol{B}(\boldsymbol{t}+\boldsymbol{\tau})$	\boldsymbol{y}	$\boldsymbol{J}_{\mathbf{A}}$	$\boldsymbol{K}_{\mathbf{A}}$	$\boldsymbol{J}_{\mathbf{B}}$	$\boldsymbol{K}_{\mathbf{B}}$
0	0	0	0	1	0	0	d	1	d
0	0	1	0	0	0	0	d	0	d
0	1	0	0	1	0	0	d	d	0
0	1	1	1	0	0	1	d	d	1
1	0	0	0	1	0	d	1	1	d
1	0	1	1	1	0	d	0	1	d
1	1	0	0	1	1	d	1	d	0
1	1	1	0	0	0	d	1	d	1

Let $A=Q_{\mathrm{A}}, B=Q_{\mathrm{B}}$ for the two $J-K$ flip-flops, and then we can obtain the relation of J_{A}, $K_{\mathrm{A}}, Q_{\mathrm{A}}, J_{\mathrm{B}}, K_{\mathrm{B}}, Q_{\mathrm{B}}$ and A, B, x, and y by the Karnaugh map:

	$\bar{A} \bar{B}$	$A \bar{B}$	$A B$	$\bar{A} B$
x		d	d	$\overline{1}$
\bar{x}		d	d	
$J_{\mathrm{A}}=B x$				

	$\bar{A} \bar{B}$	$A \bar{B}$	$A B$	$\bar{A} B$
x	d		1	\bar{d}
\bar{x}	\bar{d}	1	1	$d \bar{s}$
$K_{\mathrm{A}}=\bar{x}+B$				

	$\bar{A} \bar{B}$	$A \bar{B}$	$A B$	$\bar{A} B$
x		1	d	d
\bar{x}	1	1	d	d

$$
J_{\mathrm{B}}=\bar{x}+A
$$

	$\bar{A} \bar{B}$	$A \bar{B}$	$A B$	$\bar{A} B$
x	d	d	1	1
\bar{x}	d	d		
$K_{\mathrm{B}}=x$				

	$\bar{A} \bar{B}$	$A \bar{B}$	$A B$	$\bar{A} B$	
x					
\bar{x}			1		
$y=A B \bar{x}$					

The sequential logic circuit is as shown as in the following diagram:

Nondeterministic finite-state automaton: It is a finite-state automaton consisting of a set I of input symbols, a finite S of states, a subset A of S of accepting states, a next-state function f, and an initial state σ.

Eg. The left finite-state automaton is a nondeterministic finite-state automaton. Vertex C has no outgoing edge labeled a, and it has 2 outgoing edges labeled \boldsymbol{b}. In state
C, if b is input, we have $\mathbf{2}$ choices of next states. It can remain in state C or go to state F. On the other hand, vertex F has no outgoing edges at all. In state F, null string is input and is accepted by the nondeterministic finite-state automaton.

This nondeterministic finite-state automaton is equivalent to a finite-state automaton as shown in the follow figure.

Eg. Vertex D of the left nondeterministic finite-state automaton has 2 outgoing edges labeled a. In state F, if a is input, we have 2 choices of next states. It can remain
in state D or go to state \boldsymbol{C}.
This nondeterministic finite-state automaton is equivalent to a finite-state automaton as shown in the follow figure.

2－2 Formal Languages and Grammars

Formal language：Let A be a finite set．A formal language L over A is a subset of A^{*} ， the set of all strings over A ．
Eg．Let $A=\{a, b, c\}$ ，then $c b a b b, a a b, a b c a b, b c b a, c b, \ldots$, are all formal languages． Eg．Let $A=\{$ 狗，咬，人 $\}$ ，then＂狗咬人＂and＂人咬狗＂are both formal languages．
Eg．Let $A=\{$ women，like，men\}, then "women like men" and "men like women" are both formal languages．

Grammar G：It consists of a finite set N of non－terminal symbols，a finite set T of terminal symbols（Note：$N \cap T=\phi$ ），a starting symbol σ ，and a finite set P of productions $\left[(N \cup T)^{*}-T^{*}\right] \times(N \cup T)^{*}$ ．
Eg．The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma, S\}, T=\{a, b\}, P=\{\sigma \rightarrow b \sigma$, $\sigma \rightarrow a S, S \rightarrow b S, S \rightarrow b\}$ ．Show that $b b b a b b$ is in agreement with the grammar G ，but $a a b$ is not in agreement with the grammar G ．
（Proof）$\sigma \Rightarrow b \sigma \Rightarrow b b \sigma \Rightarrow b b b \sigma \Rightarrow b b b a S \Rightarrow b b b a b S \Rightarrow b b b a b b, \therefore b b b a b b$ is in agreement with the grammar G ．
$\sigma \Rightarrow a S \Rightarrow a b S$ or $a b, \therefore a a b$ is not in agreement with the grammar G ．

Eg．The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma, A, B\}, T=\{$ 狗，咬，人 $\}, P=\{\sigma \rightarrow$狗 $A, \sigma \rightarrow$ 人 $A, A \rightarrow$ 咬 $B, B \rightarrow$ 狗，$B \rightarrow$ 人 $\}$ ．Show that＂狗咬人＂is in agreement with the grammar，but＂狗人咬＂is not in agreement with the grammar．
（Proof）$\sigma \Rightarrow$ 狗 $A \Rightarrow$ 狗咬 $B \Rightarrow$ 狗咬人
\therefore＂狗咬人＂is in agreement with the grammar G ．
$\sigma \Rightarrow$ 狗 $A \Rightarrow$ 狗咬 B, \therefore＂狗人咬＂is not in agreement with the grammar G ．

Eg．The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma$, women，like，men，$A, B\}, T=\{$.$\} ，$ $\boldsymbol{P}=\{\sigma \rightarrow$ women $A, \sigma \rightarrow$ men $A, A \rightarrow$ like $B, B \rightarrow$ women．，$B \rightarrow$ men．$\}$ ．Show that ＂women like men．＂is in agreement with the grammar，but＂women men like．＂is not in agreement with the grammar．
（Proof）$\sigma \Rightarrow$ women $A \Rightarrow$ women like $B \Rightarrow$ women like men．
\therefore＂women like men．＂is in agreement with the grammar G ．
$\sigma \Rightarrow$ women $A \Rightarrow$ women like B, \therefore＂women men like．＂is not in agreement with the grammar G ．

Context-sensitive grammar: Its production is of the form $\alpha A \beta \rightarrow \alpha \delta \beta$, where α, $\beta \in(N \cup T)^{*}, A \in N, \delta \in(N \cup T)^{*}-\{\lambda\}$.
Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma, A, B, C, D, E\}, T=\{a, b, c\}$, $P=\{\sigma \rightarrow a A B, \sigma \rightarrow a B, A \rightarrow a A C, A \rightarrow a C, B \rightarrow D c, D \rightarrow b, C D \rightarrow C E, C E \rightarrow D E, D E \rightarrow D C$, $C c \rightarrow D c c\} . \because C D \rightarrow C E \rightarrow D E \rightarrow D C$,
$\therefore \sigma \Rightarrow a A B \Rightarrow a a A C B \Rightarrow a a a A C C B \Rightarrow a a a a A C C C D c \Rightarrow a a a a a A C C C C D c \Rightarrow$...
$\Rightarrow a^{\mathrm{n}-1} A C^{\mathrm{n}-2} D c \Rightarrow a^{\mathrm{n}-1} a C^{\mathrm{n}-1} D c \Rightarrow a^{\mathrm{n}} D C^{\mathrm{n}-1} c \Rightarrow a^{\mathrm{n}} D C^{\mathrm{n}-2} C c \Rightarrow a^{\mathrm{n}} D C^{\mathrm{n}-2} D c c$
$\Rightarrow a^{\mathrm{n}} D^{2} C^{\mathrm{n}-2} c c \Rightarrow a^{\mathrm{n}} D^{2} C^{\mathrm{n}-3} C c c \Rightarrow a^{\mathrm{n}} D^{2} C^{\mathrm{n}-3} D c c c \Rightarrow a^{\mathrm{n}} D^{3} C^{\mathrm{n}-3} c c c \Rightarrow a^{\mathrm{n}} D^{3} C^{\mathrm{n}-4} C c c c$
$\Rightarrow \quad \ldots \Rightarrow a^{\mathrm{n}} D^{\mathrm{n}-1} C c c^{\mathrm{n}-2} \Rightarrow a^{\mathrm{n}} D^{\mathrm{n}-1} D \operatorname{ccc} c^{\mathrm{n}-2} \Rightarrow a^{\mathrm{n}} D^{\mathrm{n}} \boldsymbol{c}^{\mathrm{n}} \Rightarrow a^{\mathrm{n}} b^{\mathrm{n}} c^{\mathrm{n}}, \quad$ and $L(G)=\left\{a^{n} b^{n} c^{n} \mid n=1,2, \ldots\right\}$ is a context-sensitive language.

Context-free grammar: Its production is of the form $A \rightarrow \delta$, where $A \in N, \delta \in(N \cup T)^{*}$. Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma\}, T=\{a, b\}, P=\{\sigma \rightarrow a \sigma b$, $\sigma \rightarrow a b\} . \sigma \Rightarrow a \sigma b \Rightarrow a a \sigma b b \Rightarrow a a a \sigma b b b \Rightarrow \ldots \Rightarrow a^{\mathrm{n}-1} \sigma b^{\mathrm{n}-1} \Rightarrow a^{\mathrm{n}-1} a b b^{\mathrm{n}-1} \Rightarrow a^{\mathrm{n}} b^{\mathrm{n}}$, and $L(G)=\left\{a^{\mathrm{n}} b^{\mathrm{n}} \mid n=1,2, \ldots\right\}$ is a context-free language.

Regular grammar: Its production is of the form $A \rightarrow a$ or $A \rightarrow a B$ or $A \rightarrow \lambda$, where A, $B \in N, a \in T$.
Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma, S\}, T=\{a, b\}, P=\{\sigma \rightarrow b \sigma$, $\sigma \rightarrow a S, S \rightarrow b S, S \rightarrow b\} . \boldsymbol{\sigma} \Rightarrow \boldsymbol{b} \sigma \Rightarrow \boldsymbol{b} \boldsymbol{b} \sigma \Rightarrow \boldsymbol{b} \boldsymbol{b} \boldsymbol{b} \sigma \Rightarrow \ldots \Rightarrow \boldsymbol{b}^{\mathrm{n}} \boldsymbol{\sigma} \Rightarrow \boldsymbol{b}^{\mathrm{n}} \boldsymbol{a S} \Rightarrow \boldsymbol{b}^{\mathrm{n}} \boldsymbol{a b S} \Rightarrow \boldsymbol{b}^{\mathrm{n}} \boldsymbol{a b b S}$ $\Rightarrow b^{\mathrm{n}} a b b b S \Rightarrow \ldots \Rightarrow b^{\mathrm{n}} a b^{\mathrm{m}}, L(G)=\left\{b^{\mathrm{n}} a b^{\mathrm{m}} \mid n, m=1,2, \ldots\right\}$ is a regular language.

Backus-Naur form (BNF): Rewrite the forms such as $S \rightarrow T$ into $S::=T$, and $S \rightarrow T$, $S \rightarrow U, S \rightarrow V, S \rightarrow W$ into $S::=T|U| V \mid W$.
Eg. Determine whether or not $\mathbf{- 9 0 1}$ is an integer by the following (BNF) grammar generates all decimal integers.
<starting symbol>::=<integer>
<digit>: : $=0|1| 2|3| 4|5| 6|7| 8 \mid 9$
<integer>::=<signed integer>|<unsigned integer>
<signed integer>::=+<unsigned integer>|-<unsigned integer>
<unsigned integer>::=<digit>|<digit><unsigned integer>
(Sol.)
<integer>::=<signed integer>::=-<unsigned integer>
$::=-<$ digit><unsigned integer>::=-9<unsigned integer>
$::=-9<$ digit $><$ unsigned integer $>::=-90<$ unsigned integer>::=-90<digit>::=-901
$\therefore-901$ is an integer.

Application of Grammars: Generating fractal curves to model the growth of plants
Fractal curves: A part of the whole curve resembles the whole.
Eg. Let \boldsymbol{d} be a command to draw a straight line of a fixed length in the current direction, and + be a command to turn right by 60°, and - be a command to turn left by 60°. The context-free grammar $G=(N, T, P, D)$ is defined by $N=\{D\}$, $T=\{d,+,-\}, P=\{D \rightarrow D-D++D-D, D \rightarrow d,+\rightarrow+, \rightarrow-\}$. Generate the curve by the grammar.
(Sol.) $D \Rightarrow D-D++D-D \Rightarrow d-d++d-d \in L(G)$.
1° :

The string $d-d++d-d$ is interpreted as the first-order von Koch snowflake as shown as in the left figure.
2° :
$D \Rightarrow D-D++D-D \Rightarrow D-D++D-D-D-D++D-D++D-D++D-D-D-D++D-D$
$\Rightarrow d-d++d-d-d-d++d-d++d-d++d-d-d-d++d-d$
The string $d-d++d-d-d-d++d-d++d-d++d-d-d-d++d-d$ is interpreted as the second-order von Koch snowflake as shown as in the left figure.

The other higher- $\left(3^{\text {rd }}-, 4^{\text {th }}-\right.$, and $\left.5^{\text {th }}-\right)$ order of von Koch snowflakes are as shown as in the following figures.

Eg. Some examples of the Hilbert curves can be generated by a special grammar.

Relation of finite automata and grammars

Eg．Draw the corresponding finite automaton or the nondeterministic finite automaton of the grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma, C\}, T=\{a, b\}$ ， $P=\{\sigma \rightarrow b \sigma, \sigma \rightarrow a C, C \rightarrow b C, C \rightarrow b\}$ ．
（Sol．）

It can accept the strings over $[a, b]$ containing precisely one a and ending with b ，like $b^{\mathrm{n}} a b^{\mathrm{m}}, n \geq 0, m \geq 1$ ．

Construct a grammar

Eg．Give a grammar that specifies the language $\left\{(a b)^{\mathbf{k}} c^{2 j} \mid \boldsymbol{k}, j \geq 1\right\}$ 。［交大資工所］
（Sol．）According to the above description，we draw a nondeterministic finite－state automaton as shown in the following figure．

And then we have $G=(N, T, P, \sigma)$ that is defined by $N=\{\sigma, a, b\}, T=\{c\}, P=\{\sigma \rightarrow a A$ ， $A \rightarrow b B, B \rightarrow a A|c C, C \rightarrow c D, D \rightarrow c C| \varphi\}$ ．

Eg．Describe the language（ $\{A, B, S\},\{a, b, c\}, S,\{S \rightarrow S a|A B, A \rightarrow a A| a, B \rightarrow b \mid$ cS））［交大資工所］

