
Chapter 4 Trees 
4-1 Trees and Spanning Trees 
Trees, T: A simple, cycle-free, loop-free graph satisfies: If v and w are vertices in T, 
there is a unique simple path from v to w. 
Eg. Trees. 

 
 
Spanning trees: A subgraph of G is a tree and it contains all of the vertices of G. 
Eg. Two examples of graphs and their respective corresponding spanning trees. 
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Theorem A graph G has a spanning tree if and only if G is connected. 



Breadth-first search for spanning trees algorithm 

 
Depth-first search for spanning trees algorithm 

 



Minimal Spanning trees: A spanning tree with minimum weight. 
Eg. For the following leftmost graph G, T and T’ are both the spanning trees of G, 
the weight of T is 12 and that of T’ is 20, we can see that T is a minimal spanning 
tree. 

 

 
Prim’s algorithm 

 
 



Eg. Find the minimal spanning tree of the 
left graph. 
(Sol.) 

→
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Eg. Find the minimal spanning tree of the left 
graph. 
(Sol.) 
 

→

→ → →  



 
Eg. Find the minimal spanning tree of 
the left graph by Prim’s algorithm. 
Select vertex 5 as the root. 
(Sol.) 

→
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Eg. Find the minimal spanning tree of 
the left graph. 
(Sol.) 

 



4-2 Binary Trees 
Binary tree: A binary tree is a rooted tree in which each vertex has either 2 children 
(a left child and aright child), one child (a left child or a right child, but not both), or 
no child. 
Eg. Three examples of binary trees. 

 
 
Full binary tree: A full binary tree in which each vertex has either 2 children or zero 
children. 
Theorem If T is a full binary tree with i internal vertices, then T has i +1 terminal 
vertices and 2i +1 total vertices. 
Theorem If a binary tree of height h has t terminal vertices, then log2(t) h. ≤
Eg. A binary tree has height h and the number of terminals t=8. 

 
Child-Sibling Rules: To transform a general tree into a binary tree according to 
the following procedures. 
1. Connect all brothers in the same level using the horizontal edges from the left 
one to the right one. 
2. Delete all the links between the vertex (node) and its children except the 
leftmost child. 
3. Turn the horizontal edges 45° clockwise. 
 



Eg. Transform the left tree into a binary tree. 
 
 
 
 

(Sol.) 

→

→  



 

 



4-3 Tree Traversals 
Preorder traversal algorithm 

1. Starting from the 
root, firstly visited 
the left child, and 
then visited the right 
child. 

2. After visiting all the 
left descendants of a 
node, we can visit its 
right descendants. 

 
 
 

Eg. For the left binary tree, preorder traversal yields: 7, 6, 
2, 1, 4, 3, 5, 8, 10, 9, 12, 11, 13. 
 
 
 
 

 
Eg. For the left binary tree, preorder traversal yields: 5, 
2, 1, 4, 10, 8. 
 
 
 

 
Postorder traversal algorithm 

1. Starting from the 
leftmost child, firstly 
visited its right brother, 
and then visited their 
parent. 

2. After visiting all the 
descendants, we can 
visit the ancestor on the 
higher level. 

 



 
Eg. For the left binary tree, postorder traversal 
yields: D, E, B, F, G, C, A. 
 
 

 
Inorder traversal algorithm 

 
Eg. For the binary tree, Preorder traversal is 
A, B, C, D, E, F, G, H, I, and J. 
Postorder traversal is C, E, D, B, I, J, H, G, F, 
and A.  
Inorder traversal is C, B, D, E, A, F, I, H, J, 
and G. 
 
 
 
 

 

Eg. For the binary tree, the preorder traversal 
yields: 2, 7, 2, 6, 5, 11, 5, 9, 4. And the postorder 
traversal yields: 2, 5, 11, 6, 7, 4, 9, 5, 2. The 
inorder traversal yields: 2, 7, 5, 6, 11, 2, 5, 4, 9 

 

 



Application of tree traversals: Facilitating the computer evaluation of arithmetic 
expression. 
Rules of transforming arithmetic expression into a binary tree and then 
obtaining the prefix, the infix, and the postfix forms: 
1. Add appropriate parentheses in the arithmetic expression. 
2. Starting from the innermost parenthesis, the operator is as the root, the left 
operand is as the left child and the right operand is as the right child. 
3. Obtain the prefix, the infix, and the postfix forms according to the preorder, 
the inorder, and the postorder traversal algorithms, respectively. 
 
Eg. Transform an expression involving the operators (A+B)*C-D/E into the 
prefix, the infix, and the postfix forms. 
(Sol.) Rewrite (A+B)*C-D/E into (((A+B)*C)-(D/E)) and obtain the tree as 

Prefix form: -*+ABC/DE 
Postfix form: AB+C*DE/- 
 
 
 
 
 
 
 
 
 
 

 
Eg. Transform an expression involving the 
operators (A+B)/((C*D)-E) into the prefix, 
the infix, and the postfix forms. 
(Sol.) Traverse the left binary tree, we have 
Prefix form: /+AB-*CDE 
Infix form: A+B/C*D-E 
Postfix form: AB + CD*E-/ 
 
 
 

 


