Chapter 2 Automata, Grammars, and Formal Languages

2-1 Finite-state Automata and Sequential Logic Circuits

Transition diagram (or State diagram): It describes the relation of inputs/outputs and the transitions between the states.

TABLE

<table>
<thead>
<tr>
<th>S</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ₀</td>
<td>σ₀</td>
<td>0</td>
</tr>
<tr>
<td>σ₁</td>
<td>σ₁</td>
<td>1</td>
</tr>
</tbody>
</table>

Eg. According to the left table, draw the corresponding transition diagram.

(Sol.)

Finite-state machine, **M**: It consists of a set **I** of input symbols, a set **O** of output symbols, a finite set **S** of states, a next-state function **f**, an output function **g**, and an initial state **σ**.

Eg. Draw the transition diagram of the finite-state machine which accepts a serial 0110 contained in a long string over [0, 1].

(Sol.)

Finite-state automaton, **A**: It is a finite-state machine in which the set of output function is {0,1} and the current state determine the last output. Those states for which the last output was 1 are called accepting states. Let \(\alpha=x₁x₂x₃…xₙ \) be a string. If there exist states \(σ₀, σ₁, σ₂, σ₃, …, σₙ \) satisfying (a) \(σ₀=σ \), (b) \(f(σᵢ,xᵢ)=σᵢ \) for \(i=1, …, n \), (c) \(σₙ ∈ \) the set of the accepting states, then \(α \) is accepted by the finite automaton.
Eg. The transition diagrams of a finite-state machine and its finite-state automaton.

Eg. Draw the transition diagram of the finite-state automaton which accepts a string over \([a,b]\) that contain an odd number of \(a\)'s.

(Sol.)
Application of finite-state machines and finite-state automata: Designing sequential logic circuits

Eg. Use J-K Flip-flops and other logic gates to design a digital circuit that accepts a serial 0110 contained in a long string over [0, 1].

(Sol.)

Encoding the transition diagram:

Excitation table of J-K Flip-flop:

<table>
<thead>
<tr>
<th>(Q(t))</th>
<th>(Q(t+\tau))</th>
<th>(J)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(d)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(d)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(d)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(d)</td>
<td>0</td>
</tr>
</tbody>
</table>

According to the transition diagram and the excitation table of J-K flip-flop, we have the following truth table:

<table>
<thead>
<tr>
<th>(A(t))</th>
<th>(B(t))</th>
<th>(x)</th>
<th>(A(t+\tau))</th>
<th>(B(t+\tau))</th>
<th>(y)</th>
<th>(J_A)</th>
<th>(K_A)</th>
<th>(J_B)</th>
<th>(K_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(d)</td>
<td>1</td>
<td>(d)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(d)</td>
<td>0</td>
<td>(d)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(d)</td>
<td>(d)</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(d)</td>
<td>(d)</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>(d)</td>
<td>1</td>
<td>1</td>
<td>(d)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(d)</td>
<td>0</td>
<td>1</td>
<td>(d)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>(d)</td>
<td>1</td>
<td>(d)</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(d)</td>
<td>1</td>
<td>(d)</td>
<td>1</td>
</tr>
</tbody>
</table>

Let \(A=Q_A \), \(B=Q_B \) for the two J-K flip-flops, and then we can obtain the relation of \(J_A \), \(K_A \), \(Q_A \), \(J_B \), \(K_B \), \(Q_B \) and \(A \), \(B \), \(x \), and \(y \) by the Karnaugh map:
The sequential logic circuit is as shown in the following diagram:
Nondeterministic finite-state automaton: It is a finite-state automaton consisting of a set I of input symbols, a finite S of states, a subset A of S of accepting states, a next-state function f, and an initial state σ.

Eg. The left finite-state automaton is a nondeterministic finite-state automaton. Vertex C has no outgoing edge labeled a, and it has 2 outgoing edges labeled b. In state C, if b is input, we have 2 choices of next states. It can remain in state C or go to state F. On the other hand, vertex F has no outgoing edges at all. In state F, null string is input and is accepted by the nondeterministic finite-state automaton.

This nondeterministic finite-state automaton is equivalent to a finite-state automaton as shown in the follow figure.

Eg. Vertex D of the left nondeterministic finite-state automaton has 2 outgoing edges labeled a. In state F, if a is input, we have 2 choices of next states. It can remain in state D or go to state C.

This nondeterministic finite-state automaton is equivalent to a finite-state automaton as shown in the follow figure.
2-2 Formal Languages and Grammars

Formal language: Let A be a finite set. A formal language L over A is a subset of A^*, the set of all strings over A.

Eg. Let $A=\{a,b,c\}$, then $cbabb$, aab, $abcab$, $bcba$, cb, ..., are all formal languages.
Eg. Let $A=\{狗,咬,人\}$, then “狗咬人” and “人咬狗” are both formal languages.
Eg. Let $A=\{women, like, men\}$, then “women like men” and “men like women” are both formal languages.

Grammar G: It consists of a finite set N of non-terminal symbols, a finite set T of terminal symbols (Note: $N \cap T = \emptyset$), a starting symbol σ, and a finite set P of productions $[(N \cup T)^*-T^*] \times (N \cup T)^*$.

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma,S\}$, $T=\{a,b\}$, $P=\{\sigma \rightarrow b\sigma$, $\sigma \rightarrow aS$, $S \rightarrow bS$, $S \rightarrow b\}$. Show that $bbbabb$ is in agreement with the grammar G, but aab is not in agreement with the grammar G.

(Proof) $\sigma \Rightarrow b\sigma \Rightarrow bbb \Rightarrow bbbabb$, \therefore $bbbabb$ is in agreement with the grammar G.

$\sigma \Rightarrow aS \Rightarrow abS$ or ab, \therefore aab is not in agreement with the grammar G.

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma,A,B\}$, $T=\{狗,咬,人\}$, $P=\{\sigma \rightarrow 狗 A$, $\sigma \rightarrow 人 A$, $A \rightarrow 咬 B$, $B \rightarrow 狗$, $B \rightarrow 人\}$. Show that “狗咬人” is in agreement with the grammar, but “狗人咬” is not in agreement with the grammar.

(Proof) $\sigma \Rightarrow 狗 A \Rightarrow 狗咬 B \Rightarrow 狗咬人$
\therefore “狗咬人” is in agreement with the grammar G.

$\sigma \Rightarrow 狗 A \Rightarrow 狗咬 B$, \therefore “狗人咬” is not in agreement with the grammar G.

Eg. The grammar $G=(N, T, P, \sigma)$ is defined by $N=\{\sigma, women, like, men, A,B\}$, $T=\{\}$, $P=\{\sigma \rightarrow women A$, $\sigma \rightarrow men A$, $A \rightarrow like B$, $B \rightarrow women$, $B \rightarrow men\}$. Show that “women like men.” is in agreement with the grammar, but “women men like.” is not in agreement with the grammar.

(Proof) $\sigma \Rightarrow women A \Rightarrow women like B \Rightarrow women like men.$
\therefore “women like men.” is in agreement with the grammar G.

$\sigma \Rightarrow women A \Rightarrow women like B$, \therefore “women men like.” is not in agreement with the grammar G.
Context-sensitive grammar: Its production is of the form \(aA\beta \rightarrow a\delta\beta \), where \(a, \beta \in (\Sigma \cup T)^* \), \(A \in N \), \(\delta \in (\Sigma \cup T)^*-\{\lambda}\).

Eg. The grammar \(G=\{N, T, P, \sigma\} \) is defined by \(N=\{\sigma, A, B, C, D, E\} \), \(T=\{a, b, c\} \), \(P=\{\sigma \rightarrow aAB, \sigma \rightarrow aB, A \rightarrow aAC, A \rightarrow AC, B \rightarrow DC, D \rightarrow b, CD \rightarrow CE, CE \rightarrow DE, DE \rightarrow DC, Cc \rightarrow Dcc\} \). ::: \(CD \rightarrow CE \rightarrow DE \rightarrow DC \),

\(\therefore \) \(\sigma \Rightarrow aAB \Rightarrow aaACB \Rightarrow aaaACCB \Rightarrow aaaaaACCCDc \Rightarrow aaaaaACCCCDc \Rightarrow \ldots \)

\(\Rightarrow a^nA^{n-2}DC \Rightarrow a^nA^{n-1}Cc \Rightarrow a^nDC^{n-2}Cc \Rightarrow a^nDC^{n-1}Cc \Rightarrow a^nDC^nCc \)

\(\Rightarrow \ldots \Rightarrow a^nD^{n-1}Cc^{n-2} \Rightarrow a^nD^nCc^{n-2} \Rightarrow a^nD^nC^n \Rightarrow a^nD^nC^n \), and \(L(G) = \{a^nD^nC^n|n=1,2,\ldots\} \) is a context-sensitive language.

Context-free grammar: Its production is of the form \(A \rightarrow \delta \), where \(A \in N \), \(\delta \in (\Sigma \cup T)^* \).

Eg. The grammar \(G=\{N, T, P, \sigma\} \) is defined by \(N=\{\sigma\} \), \(T=\{a, b\} \), \(P=\{\sigma \rightarrow a\sigma b, \sigma \rightarrow ab\} \). \(\sigma \Rightarrow a\sigma b \Rightarrow a\sigma\sigma b \Rightarrow aaaS\sigma b \Rightarrow \ldots \Rightarrow a^{n-1}a\sigma b^{n-1} \Rightarrow a^{n-1}abb^{n-1} \Rightarrow a^n b^n, \) and \(L(G) = \{a^n b^n|n=1,2,\ldots\} \) is a context-free language.

Regular grammar: Its production is of the form \(A \rightarrow a \) or \(A \rightarrow aB \) or \(A \rightarrow \lambda \), where \(A, B \in N \), \(a \in T \).

Eg. The grammar \(G=\{N, T, P, \sigma\} \) is defined by \(N=\{\sigma, S\} \), \(T=\{a, b\} \), \(P=\{\sigma \rightarrow b\sigma, \sigma \rightarrow aS, S \rightarrow bS, S \rightarrow b\} \). \(\sigma \Rightarrow b\sigma \Rightarrow b\sigma \Rightarrow bbb\sigma \Rightarrow \ldots \Rightarrow b^n\sigma \Rightarrow b^n\sigma \Rightarrow b^nabS \Rightarrow b^nabS \)

\(\Rightarrow b^nabbbS \Rightarrow \ldots \Rightarrow b^nab^n \), \(L(G) = \{b^nab^n|m=1,2,\ldots\} \) is a regular language.

Backus-Naur form (BNF): Rewrite the forms such as \(S \rightarrow T \) into \(S::=T \), and \(S \rightarrow T, S \rightarrow U, S \rightarrow V, S \rightarrow W \) into \(S::=T|U|V|W \).

Eg. Determine whether or not -901 is an integer by the following (BNF) grammar generates all decimal integers.

\[
\text{<starting symbol>::=<integer>}
\]

\[
\text{<digit>::=0|1|2|3|4|5|6|7|8|9}
\]

\[
\text{<integer>::=<signed integer>|<unsigned integer>}
\]

\[
\text{<signed integer>::=+<unsigned integer>}
\]

\[
\text{<unsigned integer>::=<digit>|<digit><unsigned integer>}
\]

(Sol.)

\[
\text{<integer>::=<signed integer>::=+<unsigned integer>}
\]

\[
::=<\text{digit}<\text{unsigned integer}>::=9<\text{unsigned integer}>
\]

\[
::=9<\text{digit}<\text{unsigned integer}>::=-90<\text{unsigned integer}>::=-90<\text{digit}>::=-901
\]

\(\therefore \) -901 is an integer.
Application of Grammars: Generating fractal curves to model the growth of plants

Fractal curves: A part of the whole curve resembles the whole.

Eg. Let \(d \) be a command to draw a straight line of a fixed length in the current direction, and + be a command to turn right by 60°, and - be a command to turn left by 60°. The context-free grammar \(G=(\mathcal{N}, \mathcal{T}, \mathcal{P}, \mathcal{D}) \) is defined by \(\mathcal{N}=\{D\} \), \(\mathcal{T}=\{d,+,-\} \), \(\mathcal{P}=\{D \rightarrow D-D++D-D, \ D \rightarrow d, \ + \rightarrow +, \ - \rightarrow -\} \). Generate the curve by the grammar.

(Sol.) \(D \Rightarrow D-D++D-D \Rightarrow d-d++d-d \in L(G) \).

1°:

The string \(d-d++d-d \) is interpreted as the first-order von Koch snowflake as shown as in the left figure.

2°:

\[
D \Rightarrow D-D++D-D \Rightarrow D-D++D-D++D-D++D-D++D-D
\Rightarrow d-d++d-d++d-d++d-d++d-d++d-d++d-d
\]

The string \(d-d++d-d++d-d++d-d++d-d++d-d++d-d++d-d++d-d \) is interpreted as the second-order von Koch snowflake as shown as in the left figure.

The other higher- (3rd-, 4th-, and 5th-) order of von Koch snowflakes are as shown as in the following figures.

Eg. Some examples of the Hilbert curves can be generated by a special grammar.
Relation of finite automata and grammars

Example. Draw the corresponding finite automaton or the nondeterministic finite automaton of the grammar $G=(N, T, P, \sigma)$ defined by $N=\{\sigma, C\}$, $T=\{a, b\}$, $P=\{\sigma \rightarrow b\sigma, \sigma \rightarrow aC, C \rightarrow bC, C \rightarrow b\}$.

(Sol.)

It can accept the strings over $[a, b]$ containing precisely one a and ending with b, like $b^nab^m, n \geq 0, m \geq 1$.

Construct a grammar

Example. Give a grammar that specifies the language $\{(ab)^k\ c^j \mid k, j \geq 1\}$. [交大資工所]

(Sol.) According to the above description, we draw a nondeterministic finite-state automaton as shown in the following figure.

And then we have $G=(N, T, P, \sigma)$ that is defined by $N=\{\sigma, a, b\}$, $T=\{c\}$, $P=\{\sigma \rightarrow aA, A \rightarrow bB, B \rightarrow aA \mid cC, C \rightarrow cD, D \rightarrow cC \mid \phi\}$.

Example. Describe the language $\{(A, B, S), \{a, b, c\}, S, \{S \rightarrow Sa \mid AB, A \rightarrow aA \mid a, B \rightarrow b \mid cS\}\}$. [交大資工所]