Chapter 3 Network Theory

3-1 Network and Flow

Network: A simple, weighted, directed graph satisfies: (a) The source has no incoming edges. (b) The sink has no outgoing edges, (c) The weight C_{ij} of the directed edge (i,j) is a nonnegative number. C_{ij} is called the capacity of (i,j).

Flow: A flow F_{ij} of the directed edge (i,j) is a nonnegative number and satisfies:
(a) $F_{ij} \leq C_{ij}$. (b) $\sum_i F_{ij} = \sum_j F_{ji}$ for each vertex j, neither the source and the sink.

Eg. A network with edges label by capacity (left) and flow (right).

Eg. Fill in the missing edge flows of the left network.
(Sol.) $F_{bc}=F_{ab}=3$, $F_{ad}=F_{de}=2$
$F_{ce}=F_{ez} - F_{de}=3-2=1$, $F_{cz}= F_{bc}-F_{ce}=3-1=2$

Eg. Fill in the missing edge flows of the left network.
(Sol.) $F_{bd}=F_{ab}-F_{bc}=2$, $F_{ec}=F_{ez}-F_{be}=2$, $F_{ad}= F_{de}-F_{bd}=1$
$F_{ez}= F_{de}-F_{ec}=1$
Theorem The flow out of the source equals the flow into the sink. That is,
\[\sum_i F_{ai} = \sum_i F_{iz} . \]

Value of the flow: The value of \(\sum_i F_{ai} = \sum_i F_{iz} . \)

Supersource and supersink: To be added in the original network without the source and the sink.

Properly oriented path and improperly oriented path:

Theorem Let \(P \) be a path from \(a \) to \(z \) in a network \(G \). Let \(\Delta = \min(C_{ij} - F_{ij} \) for properly oriented edges \((i,j)\), \(F_{ij} \) for improperly oriented edges \((i,j)\)). Define

\[
F_{ij}^* = \begin{cases}
F_{ij}, & \text{if } (i,j) \text{ is not in } P \\
F_{ij} + \Delta, & \text{if } (i,j) \text{ is properly oriented in } P, \text{ and then } F^* > F. \\
F_{ij} - \Delta, & \text{if } (i,j) \text{ is improperly oriented in } P
\end{cases}
\]

Eg. Increase the flow of each edge in the left path.
(Sol.) \(\Delta = \min(3-1,1,3-2,5-1) = 1 \)
New flows: 1+1=2, 1-1=0, 2+1=3, 1+1=2

We have the new flows in the path:
Eg. Increase the flow of each edge in the left path.

(Sol.) $\Delta = \min(5-1, 5-2, 5-3) = 2$

New flows: $1+2=3$, $2+2=4$, $2-2=0$, $3+2=5$. We have the new flows in the path:

Maximal flow algorithm

```
Input: A network with source a, sink z, capacity C,
vertices $a = v_0, \ldots, v_k = z$, and w
Output: A maximal flow F
max_flow($\alpha, \gamma, \nu, \pi, \lambda$) {
    // w's label is (predecessor($v$), val($v$))
    // start with zero flow
    for each edge $(i, j)$
        $F_{ij} = 0$
    while (true) {
        // remove all labels
        for $i = 0$ to $n$
            predecessor($v_i$) = null
        val($v_0$) = null
        // label $a$
        predecessor($a$) = null
        val($a$) = $\infty$
        // U is the set of unexamined, labeled vertices
        $U = \{a\}$
        // find path P from a to z on which to revise flow
        for $i = 1$ to $k$
            $\Delta = \max(\lambda - \nu_{a,v_i}, \nu_{v_{i+1}, v_0})$
            if $\Delta > 0$
                $P = (v_i, v_{i+1}, \ldots, v_0)$
                $\Delta = \nu_{a,v_i}$
                for $i = 1$ to $k + 1$
                    $\Delta = \Delta - \nu_{v_i, v_{i+1}}$
                for each edge $(i, j)$ with val($v_i$) == null
                    if ($F_{ij} < C_{ij}$) {
                        predecessor($w_i$) = $v_j$
                        val($w_i$) = min($\Delta, C_{ij} - F_{ij}$)
                        $U = U \cup \{w_i\}$
                    }
            
        for each edge $(i, j)$ with val($w_i$) == null
            if ($F_{ij} > 0$) {
                predecessor($w_i$) = $v_j$
                val($w_i$) = min($\Delta, F_{ij}$)
                $U = U \cup \{w_i\}$
            }
        $U = U \cup \{a\}$
        // end while (true loop)
    }
}
```
Eg. Find the maximum flow of the left path. The capacity C_{ij} of each edge (i,j) has been labeled on the network.
Eg. Find the maximum flow of the left path. The capacity C_{ij} of each edge (i,j) has been labeled on the network.

(Sol.)

Cut (P, \overline{P}): A cut (P, \overline{P}) in G consists of a set P of vertices and the complement \overline{P} of P, with $a \in P$ and $z \in \overline{P}$.
Eg. A cut \((P, \overline{P})\) in the left network, where
\(P=\{a,b,d\}\) and \(\overline{P}=\{c,e,f,z\}\).

Eg. A cut \((P, \overline{P})\) in the left network, where
\(P=\{a,b,d\}\) and \(\overline{P}=\{c,e,z\}\).

Capacity of the cut \((P, \overline{P})\), \(C(P, \overline{P})\):
\[
C(P, \overline{P}) = \sum_{i \in P} \sum_{j \in \overline{P}} C_{ij}
\]

Eg. Find the capacity of the cut \((P, \overline{P})\) in the left network.
(Sol.) \(C_{bc}+C_{de}=4+4=8\)

Eg. Find the capacity of the cut \((P, \overline{P})\) in the left network.
(Sol.) \(C_{bc}+C_{dc}+C_{de}=2+2+2=6\)

Theorem
\[
\sum_{i \in P} \sum_{j \in \overline{P}} C_{ij} \geq \sum_{i} F_{ai}.
\]

Max flow and min cut Theorem If equality holds in
\[
\sum_{i \in P} \sum_{j \in \overline{P}} C_{ij} \geq \sum_{i} F_{ai},
\]
then the flow is maximal and the cut is minimal. Moreover, equality holds in
\[
\sum_{i \in P} \sum_{j \in \overline{P}} C_{ij} \geq \sum_{i} F_{ai}
\]
if and only if (a) \(F_{ij}=C_{ij}\) for \(i \in P\) and \(j \in \overline{P}\) and (b) \(F_{ij}=0\) for
\(i \notin P\) and \(j \notin \overline{P}\).
3-2 Matching

Matching: Let G be a directed, bipartite graph with disjoint vertex set V and W in which the edges are directed from vertices in V to vertices in W. A matching for G is a set of edges E with no vertices in common.

Maximal matching: A matching contains the maximum number of edges.

Complete matching: A matching having the property that if $v \in V$, then $(v,w) \in E$ for some $w \in W$.

Eg. Two examples of matching. The black lines show maximal matching in each graph.

Matching network: Introducing a super source a and edges of capacity 1 from a to each of $v_i \in V$, a super sink z and edges of capacity 1 from each of $w_j \in W$ to z.
Eg. Transform the left matching for G into a matching network.

(Sol.)

Eg. Find the maximal matching for the left graph.
(Sol.) Matching network:
Eg. Find the maximal matching for the left graph.
(Sol.) Matching network:
Eg. Find the maximal matching for the left graph.

(Sol.) Matching network:

Theorem Let G be a directed, bipartite graph with disjoint vertex set V and W in which the edges are directed from vertices in V to vertices in W.

(a) A flow in the matching network gives a matching in G. The vertex $v \in V$ is matched with the vertex $w \in W$ if and only if the flow in edge $(v, w) = 1$.

(b) A maximal flow corresponds to a maximal matching.

(c) A flow whose value is $|V|$ corresponds to a complete matching.
Hall’s Marriage Theorem

Let G be a directed, bipartite graph with disjoint vertex set V and W in which the edges are directed from vertices in V to vertices in W. There exists a complete matching in G if and only if $|S| \leq |R(S)|$ for all $S \subseteq V$, where $R(S)=\{w \in W | v \in S \text{ and } (v,w) \text{ is an edge in } G\}$.

Eg. There are 3 boys: a (周杰倫), b (劉德華), c (蘇友朋) and 4 girls: r (林志玲), s (侯佩岑), t (林嘉綺), u (白歆惠). If a likes r and s, b likes s and u, c likes r, t and u, can each boy marry a compatible girl?

(Sol.)

Choose $S_1=\{a,b,c\}$, we have $R(S_1)=\{r,s,t,u\}$ and $|S_1|=3<4=|R(S_1)|$.
Choose $S_2=\{a,b\}$, we have $R(S_2)=\{r,s,u\}$ and $|S_2|=2<3=|R(S_2)|$.
Choose $S_3=\{a,c\}$, we have $R(S_3)=\{r,s,t,u\}$ and $|S_3|=2<4=|R(S_3)|$. Choose $S_4=\{b,c\}$, we have $R(S_4)=\{r,s,t,u\}$ and $|S_4|=2<4=|R(S_4)|$. ∴ Yes! Each boy can marry a compatible girl.

Eg. There are 4 members in female F4: A (Amy), B (Fanny), C (Tiffany), and D (Stacy), who choose J_1-J_5. Let $S=\{A,B,D\}$, we have $R(S)=\{J_2,J_3\}$ and $|S|=3>2=|R(S)|$, there is not a complete matching for the graph.
Eg. There are 3 boys: a(金城武), b(彭政閔), c(張家浩) and 4 girls: r(柯以柔), s(許純美), t(蔡淑臻), u(如花). If a likes r and t, b likes only t, c likes r and t, can each boy marry a compatible girl? If s(許純美) and u(如花) are replaced by 姚采穎 and 吳佩慈, how do you think about it?

(Sol.) Choose \(S=\{a,b,c\} \), we have \(R(S)=\{r,t\} \) and \(|S|=3>2=|R(S)|\), \(\therefore \) No! Some boy can not marry a compatible girl. For example, if \(a \) married \(r \) and \(b \) marries \(t \), \(c \) can not marry his compatible girl. Similarly, if \(a \) married \(t \) and \(c \) married \(r \), \(b \) can not marry his compatible girl. In case \(c \) married \(r \) and \(b \) marries \(t \), \(a \) can not marry his compatible girl.